Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liyi Geng is active.

Publication


Featured researches published by Liyi Geng.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Plasma butyrylcholinesterase regulates ghrelin to control aggression

Vicky Ping Chen; Yang Gao; Liyi Geng; Robin J. Parks; Yuan Ping Pang; Stephen Brimijoin

Significance Butyrylcholinesterase (BChE), a common plasma enzyme, has been known for decades but its real physiological roles are just beginning to emerge. Although BChE eliminates the neurotransmitter acetylcholine, it is not vital for locomotion, cognition, or other cholinergic functions. Nevertheless, we now find that circulating BChE has a large impact on aggressive behavior in mice that is attributable to its ability to inactivate ghrelin, a peptide hormone involved in hunger, feeding, and stress. A key observation was decreased fighting among group-housed male mice overexpressing BChE after viral gene transfer. In contrast, BChE knockout mice exhibited increased fighting. These effects mirrored changes in plasma levels of active ghrelin. Controlling them might offer therapeutic potential for certain behavioral disorders. Ongoing mouse studies of a proposed therapy for cocaine abuse based on viral gene transfer of butyrylcholinesterase (BChE) mutated for accelerated cocaine hydrolysis have yielded surprising effects on aggression. Further investigation has linked these effects to a reduction in circulating ghrelin, driven by BChE at levels ∼100-fold above normal. Tests with human BChE showed ready ghrelin hydrolysis at physiologic concentrations, and multiple low-mass molecular dynamics simulations revealed that ghrelin’s first five residues fit sterically and electrostatically into BChE’s active site. Consistent with in vitro results, male BALB/c mice with high plasma BChE after gene transfer exhibited sharply reduced plasma ghrelin. Unexpectedly, such animals fought less, both spontaneously and in a resident/intruder provocation model. One mutant BChE was found to be deficient in ghrelin hydrolysis. BALB/c mice transduced with this variant retained normal plasma ghrelin levels and did not differ from untreated controls in the aggression model. In contrast, C57BL/6 mice with BChE gene deletion exhibited increased ghrelin and fought more readily than wild-type animals. Collectively, these findings indicate that BChE-catalyzed ghrelin hydrolysis influences mouse aggression and social stress, with potential implications for humans.


PLOS ONE | 2013

Gene transfer of mutant mouse cholinesterase provides high lifetime expression and reduced cocaine responses with no evident toxicity

Liyi Geng; Yang Gao; Xiabin Chen; Shurong Hou; Chang-Guo Zhan; Zoran Radić; Robin J. Parks; Stephen J. Russell; Linh Pham; Stephen Brimijoin

Gene transfer of a human cocaine hydrolase (hCocH) derived from butyrylcholinesterase (BChE) by 5 mutations (A199S/F227A/S287G/A328W/Y332G) has shown promise in animal studies for treatment of cocaine addiction. To predict the physiological fate and immunogenicity of this enzyme in humans, a comparable enzyme was created and tested in a conspecific host. Thus, similar mutations (A199S/S227A/S287G/A328W/Y332G) were introduced into mouse BChE to obtain a mouse CocH (mCocH). The cDNA was incorporated into viral vectors based on: a) serotype-5 helper-dependent adenovirus (hdAD) with ApoE promoter, and b) serotype-8 adeno-associated virus with CMV promoter (AAV-CMV) or multiple promoter and enhancer elements (AAV-VIP). Experiments on substrate kinetics of purified mCocH expressed in HEK293T cells showed 30-fold higher activity (U/mg) with 3H-cocaine and 25% lower activity with butyrylthiocholine, compared with wild type BChE. In mice given modest doses of AAV-CMV-mCocH vector (0.7 or 3×1011 particles) plasma hydrolase activity rose 10-fold above control for over one year with no observed immune response. Under the same conditions, transduction of the human counterpart continued less than 2 months and antibodies to hCocH were readily detected. The advanced AAV-VIP-mCocH vector generated a dose-dependent rise in plasma cocaine hydrolase activity from 20-fold (1010 particles) to 20,000 fold (1013 particles), while the hdAD vector (1.7×1012 particles) yielded a 300,000-fold increase. Neither vector caused adverse reactions such as motor weakness, elevated liver enzymes, or disturbance in spontaneous activity. Furthermore, treatment with high dose hdAD-ApoE-mCocH vector (1.7×1012 particles) prevented locomotor abnormalities, other behavioral signs, and release of hepatic alanine amino transferase after a cocaine dose fatal to most control mice (120 mg/kg). This outcome suggests that viral gene transfer can yield clinically effective cocaine hydrolase expression for lengthy periods without immune reactions or cholinergic dysfunction, while blocking toxicity from drug overdose.


Biological Psychiatry | 2012

Cocaine hydrolase encoded in viral vector blocks the reinstatement of cocaine seeking in rats for 6 months

Justin J. Anker; Stephen Brimijoin; Yang Gao; Liyi Geng; Natalie E. Zlebnik; Robin J. Parks; Marilyn E. Carroll

BACKGROUND Cocaine dependence is a pervasive disorder with high rates of relapse. In a previous study, direct administration of a quadruple mutant albumin-fused butyrylcholinesterase that efficiently catalyzes hydrolysis of cocaine to benzoic acid and ecgonine methyl ester acutely blocked cocaine seeking in an animal model of relapse. In the present experiments, these results were extended to achieve a long-duration blockade of cocaine seeking with a gene transfer paradigm using a related butyrylcholinesterase-based cocaine hydrolase (CocH). METHODS Male and female rats were allowed to self-administer cocaine under a fixed-ratio 1 schedule of reinforcement for approximately 14 days. Following the final self-administration session, rats were injected with CocH vector or a control injection (empty vector or saline), and their cocaine solutions were replaced with saline for 14 days to allow for extinction of lever pressing. Subsequently, they were tested for drug-primed reinstatement by administering intraperitoneal injections of saline (S), cocaine (C) (5, 10, and 15 mg/kg), and d-amphetamine according to the following sequence: S, C, S, C, S, C, S, d-amphetamine. Rats then received cocaine-priming injections once weekly for 4 weeks and, subsequently, once monthly for up to 6 months. RESULTS Administration of CocH vector produced substantial and sustained CocH activity in plasma that corresponded with diminished cocaine-induced (but not amphetamine-induced) reinstatement responding for up to 6 months following treatment (compared with high-responding control animals). CONCLUSIONS These results demonstrate that viral transfer of CocH may be useful in promoting long-term resistance to relapse to cocaine addiction.


PLOS ONE | 2011

Checkpoint signaling, base excision repair, and PARP promote survival of colon cancer cells treated with 5-fluorodeoxyuridine but not 5-fluorouracil.

Liyi Geng; Amelia M. Huehls; Jill M. Wagner; Catherine J. Huntoon; Larry M. Karnitz

The fluoropyrimidines 5-fluorouracil (5-FU) and FdUrd (5-fluorodeoxyuridine; floxuridine) are the backbone of chemotherapy regimens for colon cancer and other tumors. Despite their widespread use, it remains unclear how these agents kill tumor cells. Here, we have analyzed the checkpoint and DNA repair pathways that affect colon tumor responses to 5-FU and FdUrd. These studies demonstrate that both FdUrd and 5-FU activate the ATR and ATM checkpoint signaling pathways, indicating that they cause genotoxic damage. Notably, however, depletion of ATM or ATR does not sensitize colon cancer cells to 5-FU, whereas these checkpoint pathways promote the survival of cells treated with FdUrd, suggesting that FdUrd exerts cytotoxicity by disrupting DNA replication and/or inducing DNA damage, whereas 5-FU does not. We also found that disabling the base excision (BER) repair pathway by depleting XRCC1 or APE1 sensitized colon cancer cells to FdUrd but not 5-FU. Consistent with a role for the BER pathway, we show that small molecule poly(ADP-ribose) polymerase 1/2 (PARP) inhibitors, AZD2281 and ABT-888, remarkably sensitized both mismatch repair (MMR)-proficient and -deficient colon cancer cell lines to FdUrd but not to 5-FU. Taken together, these studies demonstrate that the roles of genotoxin-induced checkpoint signaling and DNA repair differ significantly for these agents and also suggest a novel approach to colon cancer therapy in which FdUrd is combined with a small molecule PARP inhibitor.


Chemico-Biological Interactions | 2013

Effects of anti-cocaine vaccine and viral gene transfer of cocaine hydrolase in mice on cocaine toxicity including motor strength and liver damage

Yang Gao; Liyi Geng; Frank M. Orson; Berma M. Kinsey; Thomas R. Kosten; Xiaoyun Shen; Stephen Brimijoin

In developing an vivo drug-interception therapy to treat cocaine abuse and hinder relapse into drug seeking provoked by re-encounter with cocaine, two promising agents are: (1) a cocaine hydrolase enzyme (CocH) derived from human butyrylcholinesterase and delivered by gene transfer; (2) an anti-cocaine antibody elicited by vaccination. Recent behavioral experiments showed that antibody and enzyme work in a complementary fashion to reduce cocaine-stimulated locomotor activity in rats and mice. Our present goal was to test protection against liver damage and muscle weakness in mice challenged with massive doses of cocaine at or near the LD50 level (100-120 mg/kg, i.p.). We found that, when the interceptor proteins were combined at doses that were only modestly protective in isolation (enzyme, 1mg/kg; antibody, 8 mg/kg), they provided complete protection of liver tissue and motor function. When the enzyme levels were ~400-fold higher, after in vivo transduction by adeno-associated viral vector, similar protection was observed from CocH alone.


Biochemical Journal | 2015

Kinetic characterization of a cocaine hydrolase engineered from mouse butyrylcholinesterase.

Xiabin Chen; Xiaoqin Huang; Liyi Geng; Liu Xue; Shurong Hou; Xirong Zheng; Stephen Brimijoin; Fang Zheng; Chang-Guo Zhan

Mouse butyrylcholinesterase (mBChE) and an mBChE-based cocaine hydrolase (mCocH, i.e. the A¹⁹⁹S/S²²⁷A/S²⁸⁷G/A³²⁸W/Y³³²G mutant) have been characterized for their catalytic activities against cocaine, i.e. naturally occurring (-)-cocaine, in comparison with the corresponding human BChE (hBChE) and an hBChE-based cocaine hydrolase (hCocH, i.e. the A¹⁹⁹S/F²²⁷A/S²⁸⁷G/A³²⁸W/Y³³²G mutant). It has been demonstrated that mCocH and hCocH have improved the catalytic efficiency of mBChE and hBChE against (-)-cocaine by ~8- and ~2000-fold respectively, although the catalytic efficiencies of mCocH and hCocH against other substrates, including acetylcholine (ACh) and butyrylthiocholine (BTC), are close to those of the corresponding wild-type enzymes mBChE and hBChE. According to the kinetic data, the catalytic efficiency (k(cat)/K(M)) of mBChE against (-)-cocaine is comparable with that of hBChE, but the catalytic efficiency of mCocH against (-)-cocaine is remarkably lower than that of hCocH by ~250-fold. The remarkable difference in the catalytic activity between mCocH and hCocH is consistent with the difference between the enzyme-(-)-cocaine binding modes obtained from molecular modelling. Further, both mBChE and hBChE demonstrated substrate activation for all of the examined substrates [(-)-cocaine, ACh and BTC] at high concentrations, whereas both mCocH and hCocH showed substrate inhibition for all three substrates at high concentrations. The amino-acid mutations have remarkably converted substrate activation of the enzymes into substrate inhibition, implying that the rate-determining step of the reaction in mCocH and hCocH might be different from that in mBChE and hBChE.


International Journal of Obesity | 2017

Butyrylcholinesterase regulates central ghrelin signaling and has an impact on food intake and glucose homeostasis

Vicky Ping Chen; Yang Gao; Liyi Geng; S Brimijoin

Background:Ghrelin is the only orexigenic hormone known to stimulate food intake and promote obesity and insulin resistance. We recently showed that plasma ghrelin is controlled by butyrylcholinesterase (BChE), which has a strong impact on feeding and weight gain. BChE knockout (KO) mice are prone to obesity on high-fat diet, but hepatic BChE gene transfer rescues normal food intake and obesity resistance. However, these mice lack brain BChE and still develop hyperinsulinemia and insulin resistance, suggesting essential interactions between BChE and ghrelin within the brain.Methods:To test the hypothesis we used four experimental groups: (1) untreated wild-type mice, (2) BChE KO mice with LUC delivered by adeno-associated virus (AAV) in combined intravenous (i.v.) and intracerebral (i.c.) injections, (3) KO mice given AAV for mouse BChE (i.v. only) and (4) KO mice given the same vector both i.v. and i.c. All mice ate a 45% calorie high-fat diet from the age of 1 month. Body weight, body composition, daily caloric intake and serum parameters were monitored throughout, and glucose tolerance and insulin tolerance tests were performed at intervals.Results:Circulating ghrelin levels dropped substantially in the KO mice after i.v. AAV–BChE delivery, which led to normal food intake and healthy body weight. BChE KO mice that received AAV–BChE through i.v. and i.c. combined treatments not only resisted weight gain on high-fat diet but also retained normal glucose and insulin tolerance.Conclusions:These data indicate a central role for BChE in regulating both insulin and glucose homeostasis. BChE gene transfer could be a useful therapy for complications linked to diet-induced obesity and insulin resistance.


Biochemical Pharmacology | 2015

Radiometric assay of ghrelin hydrolase activity and 3H-ghrelin distribution into mouse tissues

Vicky Ping Chen; Yang Gao; Liyi Geng; Stephen Brimijoin

A high-throughput radiometric assay was developed to characterize enzymatic hydrolysis of ghrelin and to track the peptides fate in vivo. The assay is based on solvent partitioning of [(3)H]-octanoic acid liberated from [(3)H]-octanoyl ghrelin during enzymatic hydrolysis. This simple and cost-effective method facilitates kinetic analysis of ghrelin hydrolase activity of native and mutated butyrylcholinesterases or carboxylesterases from multiple species. In addition, the assays high sensitivity facilitates ready evaluation of ghrelins pharmacokinetics and tissue distribution in mice after i.v. bolus administration of radiolabeled peptide.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Butyrylcholinesterase gene transfer in obese mice prevents postdieting body weight rebound by suppressing ghrelin signaling

Vicky Ping Chen; Yang Gao; Liyi Geng; Stephen Brimijoin

Significance Obesity is a major public health problem affecting physical and emotional well-being. Although lifestyle-based programs can help with weight loss, avoiding weight regain is nearly impossible because of persistent hormonal adaptations. Here, in mouse models, we explored a more effective strategy using viral gene transfer of butyrylcholinesterase (BChE) to control the appetite-mediating hormone acyl-ghrelin. We found that a single injection of BChE vector led to a lifetime high enzyme expression and lower circulating acyl-ghrelin. This same treatment suppressed postdieting hyperphagia, corrected metabolic lesions, and lowered weight regain. This outcome confirms the impact of the BChE-ghrelin axis on body weight and indicates that BChE gene transfer could be a successful strategy for long-term control of obesity and the “metabolic syndrome.” The worldwide prevalence of obesity is increasing at an alarming rate but treatment options remain limited. Despite initial success, weight loss by calorie restriction (CR) often fails because of rebound weight gain. Postdieting hyperphagia along with altered hypothalamic neuro-architecture appears to be one direct cause of this undesirable outcome. In response to calorie deficiency the circulating levels of the appetite-promoting hormone, acyl-ghrelin, rise sharply. We hypothesize that proper modulation of acyl-ghrelin and its receptor’s sensitivity will favorably impact energy intake and reprogram the body weight set point. Here we applied viral gene transfer of the acyl-ghrelin hydrolyzing enzyme, butyrylcholinesterase (BChE), in a mouse model of diet-induced obesity. Our results confirmed that BChE overexpression decreased circulating acyl-ghrelin levels, suppressed CR-provoked ghrelin signaling, and restored central ghrelin sensitivity. In addition to maintaining healthy body weights, BChE treated mice had modest postdieting food intake and showed normal glucose homeostasis. Spontaneous activity and energy expenditure did not differ significantly between treated and untreated mice after body weight rebound, suggesting that BChE gene transfer did not alter energy expenditure in the long term. These findings indicate that combining BChE treatment with CR could be an effective approach in treating human obesity and aiding lifelong weight management.


Journal of Pharmacology and Experimental Therapeutics | 2016

Cocaine Hydrolase Gene Transfer Demonstrates Cardiac Safety and Efficacy against Cocaine-Induced QT Prolongation in Mice

Vishakantha Murthy; Santiago Reyes; Liyi Geng; Yang Gao; Stephen Brimijoin

Cocaine addiction is associated with devastating medical consequences, including cardiotoxicity and risk-conferring prolongation of the QT interval. Viral gene transfer of cocaine hydrolase engineered from butyrylcholinesterase offers therapeutic promise for treatment-seeking drug users. Although previous preclinical studies have demonstrated benefits of this strategy without signs of toxicity, the specific cardiac safety and efficacy of engineered butyrylcholinesterase viral delivery remains unknown. Here, telemetric recording of electrocardiograms from awake, unrestrained mice receiving a course of moderately large cocaine doses (30 mg/kg, twice daily for 3 weeks) revealed protection against a 2-fold prolongation of the QT interval conferred by pretreatment with cocaine hydrolase vector. By itself, this prophylactic treatment did not affect QT interval duration or cardiac structure, demonstrating that viral delivery of cocaine hydrolase has no intrinsic cardiac toxicity and, on the contrary, actively protects against cocaine-induced QT prolongation.

Collaboration


Dive into the Liyi Geng's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shurong Hou

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge