Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liying Guo is active.

Publication


Featured researches published by Liying Guo.


Nature Immunology | 2004

Conditional deletion of Gata3 shows its essential function in TH1-TH2 responses

Booki Min; Jane Hu-Li; Cynthia Watson; Alex Grinberg; Qi Wang; Nigel Killeen; Joseph F. Urban; Liying Guo; William E. Paul

Expression of the transcription factor GATA-3 is strongly associated with T helper type 2 (TH2) differentiation, but genetic evidence for its involvement in this process has been lacking. Here, we generated a conditional GATA-3-deficient mouse line. In vitro deletion of Gata3 diminished both interleukin 4 (IL-4)–dependent and IL-4-independent TH2 cell differentiation; without GATA-3, TH1 differentiation occurred in the absence of IL-12 and interferon-γ. Gata3 deletion limited the growth of TH2 cells but not TH1 cells. Deletion of Gata3 from established TH2 cells abolished IL-5 and IL-13 but not IL-4 production. In vivo deletion of Gata3 using OX40-Cre eliminated TH2 responses and allowed the development of interferon-γ-producing cells in mice infected with Nippostrongylus brasiliensis. Thus, GATA-3 serves as a principal switch in determining TH1-TH2 responses.


Proceedings of the National Academy of Sciences of the United States of America | 2009

IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells

Liying Guo; Gang Wei; Wei Liao; Warren J. Leonard; Keji Zhao; William E. Paul

Expression of T1ST2, the IL-33R, by Th2 cells requires GATA3. Resting Th2 cells express little GATA3, which is increased by IL-33 and a STAT5 activator, in turn increasing T1ST2 from its low-level expression on resting Th2 cells. Th2 cells that have upregulated T1ST2 produce IL-13, but not IL-4, in response to IL-33 plus a STAT5 activator in an antigen-independent, NF-κB-dependent, cyclosporin A (CsA)-resistant manner. Similarly, Th17 cells produce IL-17A in response to IL-1β and a STAT3 activator and Th1 cells produce IFNγ in response to IL-18 and a STAT4 inducer. Thus, each effector Th cell produces cytokines without antigenic stimulation in response to an IL-1 family member and a specific STAT activator, implying an innate mechanism through which memory CD4 T cells are recruited by an induced cytokine environment.


Cell Research | 2006

GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors.

Hidehiro Yamane; Javier Cote-Sierra; Liying Guo; William E. Paul

Naïve CD4 T cells can differentiate into at least two different types of T helpers, Th1 and Th2 cells. Th2 cells, capable of producing IL-4, IL-5 and IL-13, are involved in humoral immunity against extracellular pathogens and in the induction of asthma and other allergic diseases. In this review, we summarize recent reports regarding the transcription factors involved in Th2 differentiation and cell expansion, including Stat5, Gfi-1 and GATA-3. Stat5 activation is necessary and sufficient for IL-2-mediated function in Th2 differentiation. Enhanced Stat5 signaling induces Th2 differentiation independent of IL-4 signaling; although it does not up-regulate GATA-3 expression, it does require the presence of GATA-3 for its action. Gfi-1, induced by IL-4, promotes the expansion of GATA-3-expressing cells. Analysis of conditional Gata3 knockout mice confirmed the critical role of GATA-3 in Th2 cell differentiation (both IL-4 dependent and IL-4 independent) and in Th2 cell proliferation and also showed the importance of basal GATA-3 expression in inhibiting Th1 differentiation.


Immunity | 2003

Stat5 Activation Plays a Critical Role in Th2 Differentiation

Javier Cote-Sierra; Liying Guo; William E. Paul

Upon TCR engagement, naive CD4 T cells differentiate toward the Th1 or Th2 phenotype. IL-4, acting through Stat6, plays a major role in Th2 differentiation; IL-2 has also been reported to be essential. Here, we report that retroviral (RV)-mediated expression of a constitutively active Stat5A mutant (STAT5A1*6) can fully restore IL-4 production when naive CD4 T cells are primed in the absence of IL-2. Furthermore, STAT5A1*6 expression causes Th2 differentiation in the absence of IL-4 or in Stat6- or IL-4Ralpha-deficient cells. Infection with STAT5A1*6-NGFR-RV does not enhance GATA-3 expression. STAT5A1*6-NGFR-RV and GATA-3-GFP-RV each render the Il4 gene accessible, but the sites of restriction enzyme accessibility are different. Stat5A binds to HSII and HSIII sites of the Il4 gene. Coinfection with STAT5A1*6-NGFR-RV and GATA-3-GFP-RV results in optimal Th2 priming.


Journal of Immunology | 2001

Stat6 Is Necessary and Sufficient for IL-4’s Role in Th2 Differentiation and Cell Expansion

Liying Guo; Cynthia Watson; Jane Hu-Li; William E. Paul

IL-4 plays a critical role in the differentiation of TCR-stimulated naive CD4 T cells to the Th2 phenotype. In response to IL-4, the IL-4R activates a set of phosphotyrosine binding domain-containing proteins, including insulin receptor substrate 1/2, Shc, and IL-4R interacting protein, as well as Stat6. Stat6 has been shown to be required for Th2 differentiation. To determine the roles of the phosphotyrosine binding adaptors in Th2 differentiation, we prepared a retrovirus containing a mutant of the human (h)IL-4R α-chain, Y497F, which is unable to recruit these adaptors. The mutant hIL-4Rα, as well as the wild-type (WT) hIL-4Rα, was introduced into naive CD4 T cells. Upon hIL-4 stimulation, Y497F worked as well as the WT hIL-4Rα in driving Th2 differentiation, as measured by Gata3 up-regulation and IL-4 production. Furthermore, IL-4-driven cell expansion was also normal in the cells infected with Y497F, although cells infected with Y497F were not capable of phosphorylating insulin receptor substrate 2. These results suggest that the signal pathway mediated by Y497 is dispensable for both IL-4-driven Th2 differentiation and cell expansion. Both WT and Y497F hIL-4Rα lose the ability to drive Th2 differentiation and cell expansion in Stat6-knockout CD4 T cells. A constitutively activated form of Stat6 introduced into CD4 T cells resulted in both Th2 differentiation and enhanced cell expansion. Thus, activated Stat6 is necessary and sufficient to mediate both IL-4-driven Th2 differentiation and cell expansion in CD4 T cells.


Immunity | 2002

Growth Factor Independent-1 Induced by IL-4 Regulates Th2 Cell Proliferation

Liying Guo; Booki Min; Cynthia Watson; Jane Hu-Li; Howard A Young; Philip N. Tsichlis; William E. Paul

IL-4 is important in Th2 differentiation and in cell expansion. Stat6 is necessary and sufficient for both functions. Although Gata3 is critical for Th2 polarization, it is not sufficient to mediate IL-4-driven cell expansion. We report that growth factor independent-1 (Gfi-1), a Stat6-dependent transcriptional repressor, strikingly increases Th2 cell expansion by promoting proliferation and preventing apoptosis. Cells infected with a Gfi-1 retrovirus show striking enhancement of IL-2-induced Stat5 phosphorylation and repression of p27(Kip-1) expression, suggesting a potential mechanism for the Gfi-1 growth effect. The synergy of Gfi-1 and Gata3 provides a mechanism through which IL-4 could selectively promote Th2 cell expansion.


Nature Immunology | 2015

IL-25-responsive, lineage-negative KLRG1hi cells are multipotential /`inflammatory/' type 2 innate lymphoid cells

Yuefeng Huang; Liying Guo; Jin Qiu; Xi Chen; Jane Hu-Li; Ulrich Siebenlist; Peter R Williamson; Joseph F. Urban; William E. Paul

Innate lymphoid cells (ILCs) are lymphocyte-like cells that lack T cell or B cell antigen receptors and mediate protective and repair functions through cytokine secretion. Among these, type 2 ILCs (ILC2 cells) are able to produce type 2 cytokines. We report the existence of an inflammatory ILC2 (iILC2) population responsive to interleukin 25 (IL-25) that complemented IL-33-responsive natural ILC2 (nILC2) cells. iILC2 cells developed into nILC2-like cells in vitro and in vivo and contributed to the expulsion of Nippostrongylus brasiliensis. They also acquired IL-17-producing ability and provided partial protection against Candida albicans. We propose that iILC2 cells are transient progenitors of ILCs mobilized by inflammation and infection that develop into nILC2-like cells or ILC3-like cells and contribute to immunity to both helminths and fungi.


Immunity | 2001

Regulation of Expression of IL-4 Alleles: Analysis Using a Chimeric GFP/IL-4 Gene

Jane Hu-Li; Christophe Pannetier; Liying Guo; Max Löhning; Hua Gu; Cynthia Watson; Mario Assenmacher; Andreas Radbruch; William E. Paul

CD4 cells from mice heterozygous for an IL-4 and a GFP/IL-4 gene frequently express a single allele. Analysis of IL-4 or GFP production by cells from recently primed Th2 cells indicates that essentially all are competent to transcribe either allele but have a low probability of doing so. By contrast, long-term Th2 clones show distinct and heritable ratios in the proportion of cells that express IL-4 or GFP. We conclude that in the course of Th2 priming an early efficient event renders both alleles capable of being inefficiently transcribed; a second, less frequent event occurs that renders one allele more competent, accounting for the differential expression of IL-4 and GFP in different clones.


Immunity | 2012

The Transcription Factor T-bet Is Induced by Multiple Pathways and Prevents an Endogenous Th2 Cell Program during Th1 Cell Responses

Dragana Jankovic; Andrew J. Oler; Gang Wei; Suveena Sharma; Gangqing Hu; Liying Guo; Ryoji Yagi; Hidehiro Yamane; George Punkosdy; Lionel Feigenbaum; Keji Zhao; William E. Paul

T-bet is a critical transcription factor for T helper 1 (Th1) cell differentiation. To study the regulation and functions of T-bet, we developed a T-bet-ZsGreen reporter mouse strain. We determined that interleukin-12 (IL-12) and interferon-γ (IFN-γ) were redundant in inducing T-bet in mice infected with Toxoplasma gondii and that T-bet did not contribute to its own expression when induced by IL-12 and IFN-γ. By contrast, T-bet and the transcription factor Stat4 were critical for IFN-γ production whereas IFN-γ signaling was dispensable for inducing IFN-γ. Loss of T-bet resulted in activation of an endogenous program driving Th2 cell differentiation in cells expressing T-bet-ZsGreen. Genome-wide analyses indicated that T-bet directly induced many Th1 cell-related genes but indirectly suppressed Th2 cell-related genes. Our study revealed redundancy and synergy among several Th1 cell-inducing pathways in regulating the expression of T-bet and IFN-γ, and a critical role of T-bet in suppressing an endogenous Th2 cell-associated program.


Journal of Experimental Medicine | 2009

Down-regulation of Gfi-1 expression by TGF-β is important for differentiation of Th17 and CD103+ inducible regulatory T cells

Todd S. Davidson; Gang Wei; Dragana Jankovic; Kairong Cui; Dustin E. Schones; Liying Guo; Keji Zhao; Ethan M. Shevach; William E. Paul

Growth factor independent 1 (Gfi-1), a transcriptional repressor, is transiently induced during T cell activation. Interleukin (IL) 4 further induces Gfi-1, resulting in optimal Th2 cell expansion. We report a second important function of Gfi-1 in CD4 T cells: prevention of alternative differentiation by Th2 cells, and inhibition of differentiation of naive CD4 T cells to either Th17 or inducible regulatory T (iTreg) cells. In Gfi1−/− Th2 cells, the Rorc, Il23r, and Cd103 loci showed histone 3 lysine 4 trimethylation modifications that were lacking in wild-type Th2 cells, implying that Gfi-1 is critical for epigenetic regulation of Th17 and iTreg cell–related genes in Th2 cells. Enforced Gfi-1 expression inhibited IL-17 production and iTreg cell differentiation. Furthermore, a key inducer of both Th17 and iTreg cell differentiation, transforming growth factor β, repressed Gfi-1 expression, implying a reciprocal negative regulation of CD4 T cell fate determination. Chromatin immunoprecipitation showed direct binding of the Gfi-1–lysine-specific demethylase 1 repressive complex to the intergenic region of Il17a/Il17f loci and to intron 1 of Cd103. T cell–specific Gfi1 conditional knockout mice displayed a striking delay in the onset of experimental allergic encephalitis correlated with a dramatic increase of Foxp3+CD103+ CD4 T cells. Thus, Gfi-1 plays a critical role both in enhancing Th2 cell expansion and in repressing induction of Th17 and CD103+ iTreg cells.

Collaboration


Dive into the Liying Guo's collaboration.

Top Co-Authors

Avatar

Jane Hu-Li

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cynthia Watson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Joseph F. Urban

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Hidehiro Yamane

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Yuefeng Huang

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Xi Chen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Dragana Jankovic

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Javier Cote-Sierra

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge