Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Liza Cubeddu is active.

Publication


Featured researches published by Liza Cubeddu.


Nature | 2008

Single-stranded DNA-binding protein hSSB1 is critical for genomic stability

Derek J. Richard; Emma Bolderson; Liza Cubeddu; Ross I. M. Wadsworth; Kienan Savage; Girdhar G. Sharma; Matthew L. Nicolette; Sergie Tsvetanov; Michael J. McIlwraith; Raj K. Pandita; Shunichi Takeda; Ronald T. Hay; Jean Gautier; Stephen C. West; Tanya T. Paull; Tej K. Pandita; Malcolm F. White; Kum Kum Khanna

Single-strand DNA (ssDNA)-binding proteins (SSBs) are ubiquitous and essential for a wide variety of DNA metabolic processes, including DNA replication, recombination, DNA damage detection and repair. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating nucleases, helicases and strand-exchange proteins, activating transcription and mediating protein–protein interactions. In eukaryotes, the major SSB, replication protein A (RPA), is a heterotrimer. Here we describe a second human SSB (hSSB1), with a domain organization closer to the archaeal SSB than to RPA. Ataxia telangiectasia mutated (ATM) kinase phosphorylates hSSB1 in response to DNA double-strand breaks (DSBs). This phosphorylation event is required for DNA damage-induced stabilization of hSSB1. Upon induction of DNA damage, hSSB1 accumulates in the nucleus and forms distinct foci independent of cell-cycle phase. These foci co-localize with other known repair proteins. In contrast to RPA, hSSB1 does not localize to replication foci in S-phase cells and hSSB1 deficiency does not influence S-phase progression. Depletion of hSSB1 abrogates the cellular response to DSBs, including activation of ATM and phosphorylation of ATM targets after ionizing radiation. Cells deficient in hSSB1 exhibit increased radiosensitivity, defective checkpoint activation and enhanced genomic instability coupled with a diminished capacity for DNA repair. These findings establish that hSSB1 influences diverse endpoints in the cellular DNA damage response.


The EMBO Journal | 2003

Insights into ssDNA recognition by the OB fold from a structural and thermodynamic study of Sulfolobus SSB protein

Iain D. Kerr; Ross I. M. Wadsworth; Liza Cubeddu; Wulf Blankenfeldt; James H. Naismith; Malcolm F. White

Information processing pathways such as DNA replication are conserved in eukaryotes and archaea and are significantly different from those found in bacteria. Single‐stranded DNA‐binding (SSB) proteins (or replication protein A, RPA, in eukaryotes) play a central role in many of these pathways. However, whilst euryarchaea have a eukaryotic‐type RPA homologue, crenarchaeal SSB proteins appear much more similar to the bacterial proteins, with a single OB fold for DNA binding and a flexible C‐terminal tail that is implicated in protein–protein interactions. We have determined the crystal structure of the SSB protein from the crenarchaeote Sulfolobus solfataricus to 1.26 Å. The structure shows a striking and unexpected similarity to the DNA‐binding domains of human RPA, providing confirmation of the close relationship between archaea and eukaryotes. The high resolution of the structure, together with thermodynamic and mutational studies of DNA binding, allow us to propose a molecular basis for DNA binding and define the features required for eukaryotic and archaeal OB folds.


Current Pharmaceutical Design | 2009

It Takes Two to Tango: The Structure and Function of LIM, RING, PHD and MYND Domains

Jacqueline M. Matthews; Mugdha Bhati; Eija Lehtomaki; Robyn E. Mansfield; Liza Cubeddu; Joel P. Mackay

LIM (Lin-11, Isl-1, Mec-3), RING (Really interesting new gene), PHD (Plant homology domain) and MYND (myeloid, Nervy, DEAF-1) domains are all zinc-binding domains that ligate two zinc ions. Unlike the better known classical zinc fingers, these domains do not bind DNA, but instead mediate interactions with other proteins. LIM-domain containing proteins have diverse functions as regulators of gene expression, cell adhesion and motility and signal transduction. RING finger proteins are generally associated with ubiquitination; the presence of such a domain is the defining feature of a class of E3 ubiquitin protein ligases. PHD proteins have been associated with SUMOylation but most recently have emerged as a chromatin recognition motif that reads the methylation state of histones. The function of the MYND domain is less clear, but MYND domains are also found in proteins that have ubiquitin ligase and/or histone methyltransferase activity. Here we review the structure-function relationships for these domains and discuss strategies to modulate their activity.


Nucleic Acids Research | 2011

hSSB1 interacts directly with the MRN complex stimulating its recruitment to DNA double-strand breaks and its endo-nuclease activity

Derek J. Richard; Liza Cubeddu; Aaron J. Urquhart; Amanda L. Bain; Emma Bolderson; Dinoop Menon; Malcolm F. White; Kum Kum Khanna

hSSB1 is a recently discovered single-stranded DNA binding protein that is essential for efficient repair of DNA double-strand breaks (DSBs) by the homologous recombination pathway. hSSB1 is required for the efficient recruitment of the MRN complex to sites of DSBs and for the efficient initiation of ATM dependent signalling. Here we explore the interplay between hSSB1 and MRN. We demonstrate that hSSB1 binds directly to NBS1, a component of the MRN complex, in a DNA damage independent manner. Consistent with the direct interaction, we observe that hSSB1 greatly stimulates the endo-nuclease activity of the MRN complex, a process that requires the C-terminal tail of hSSB1. Interestingly, analysis of two point mutations in NBS1, associated with Nijmegen breakage syndrome, revealed weaker binding to hSSB1, suggesting a possible disease mechanism.


Nucleic Acids Research | 2011

hSSB1 rapidly binds at the sites of DNA double-strand breaks and is required for the efficient recruitment of the MRN complex

Derek J. Richard; Kienan Savage; Emma Bolderson; Liza Cubeddu; Sairei So; Mihaela Ghita; David J. Chen; Malcolm F. White; Kerry Richard; Kevin Prise; Giuseppe Schettino; Kum Kum Khanna

hSSB1 is a newly discovered single-stranded DNA (ssDNA)-binding protein that is essential for efficient DNA double-strand break signalling through ATM. However, the mechanism by which hSSB1 functions to allow efficient signalling is unknown. Here, we show that hSSB1 is recruited rapidly to sites of double-strand DNA breaks (DSBs) in all interphase cells (G1, S and G2) independently of, CtIP, MDC1 and the MRN complex (Rad50, Mre11, NBS1). However expansion of hSSB1 from the DSB site requires the function of MRN. Strikingly, silencing of hSSB1 prevents foci formation as well as recruitment of MRN to sites of DSBs and leads to a subsequent defect in resection of DSBs as evident by defective RPA and ssDNA generation. Our data suggests that hSSB1 functions upstream of MRN to promote its recruitment at DSBs and is required for efficient resection of DSBs. These findings, together with previous work establish essential roles of hSSB1 in controlling ATM activation and activity, and subsequent DSB resection and homologous recombination (HR).


BMC Molecular Biology | 2013

Human single-stranded DNA binding proteins are essential for maintaining genomic stability

Nicholas W. Ashton; Emma Bolderson; Liza Cubeddu; Kenneth J. O’Byrne; Derek J. Richard

The double-stranded conformation of cellular DNA is a central aspect of DNA stabilisation and protection. The helix preserves the genetic code against chemical and enzymatic degradation, metabolic activation, and formation of secondary structures. However, there are various instances where single-stranded DNA is exposed, such as during replication or transcription, in the synthesis of chromosome ends, and following DNA damage. In these instances, single-stranded DNA binding proteins are essential for the sequestration and processing of single-stranded DNA. In order to bind single-stranded DNA, these proteins utilise a characteristic and evolutionary conserved single-stranded DNA-binding domain, the oligonucleotide/oligosaccharide-binding (OB)-fold. In the current review we discuss a subset of these proteins involved in the direct maintenance of genomic stability, an important cellular process in the conservation of cellular viability and prevention of malignant transformation. We discuss the central roles of single-stranded DNA binding proteins from the OB-fold domain family in DNA replication, the restart of stalled replication forks, DNA damage repair, cell cycle-checkpoint activation, and telomere maintenance.


Nucleic Acids Research | 2007

Sequence specificity of single-stranded DNA-binding proteins: a novel DNA microarray approach

Hugh P. Morgan; Peter Estibeiro; Martin A. Wear; Klaas E.A. Max; Udo Heinemann; Liza Cubeddu; Maurice P. Gallagher; Peter J. Sadler; Malcolm D. Walkinshaw

We have developed a novel DNA microarray-based approach for identification of the sequence-specificity of single-stranded nucleic-acid-binding proteins (SNABPs). For verification, we have shown that the major cold shock protein (CspB) from Bacillus subtilis binds with high affinity to pyrimidine-rich sequences, with a binding preference for the consensus sequence, 5′-GTCTTTG/T-3′. The sequence was modelled onto the known structure of CspB and a cytosine-binding pocket was identified, which explains the strong preference for a cytosine base at position 3. This microarray method offers a rapid high-throughput approach for determining the specificity and strength of ss DNA–protein interactions. Further screening of this newly emerging family of transcription factors will help provide an insight into their cellular function.


PLOS ONE | 2012

Contribution of DEAF1 structural domains to the interaction with the breast cancer oncogene LMO4.

Liza Cubeddu; Soumya Joseph; Derek J. Richard; Jacqueline M. Matthews

The proteins LMO4 and DEAF1 contribute to the proliferation of mammary epithelial cells. During breast cancer LMO4 is upregulated, affecting its interaction with other protein partners. This may set cells on a path to tumour formation. LMO4 and DEAF1 interact, but it is unknown how they cooperate to regulate cell proliferation. In this study, we identify a specific LMO4-binding domain in DEAF1. This domain contains an unstructured region that directly contacts LMO4, and a coiled coil that contains the DEAF1 nuclear export signal (NES). The coiled coil region can form tetramers and has the typical properties of a coiled coil domain. Using a simple cell-based assay, we show that LMO4 modulates the activity of the DEAF NES, causing nuclear accumulation of a construct containing the LMO4-interaction region of DEAF1.


Journal of Biological Chemistry | 2013

A structural analysis of DNA binding by Myelin Transcription Factor 1 double zinc fingers

Roland Gamsjaeger; Mitchell R. O'Connell; Liza Cubeddu; Nicholas E. Shepherd; Jason A. Lowry; Ann H. Kwan; Marylène Vandevenne; Michael K. Swanton; Jacqueline M. Matthews; Joel P. Mackay

Background: Myelin transcription factor 1 (MyT1) contains seven similar zinc finger domains that bind DNA specifically. Results: A three-dimensional structural model explains how a double zinc finger unit is able to recognize DNA. Conclusion: DNA-binding residues are conserved among all MyT1 zinc fingers, suggesting an identical DNA binding mode. Significance: Determination of the molecular details of DNA interaction will be crucial in understanding MyT1 function. Myelin transcription factor 1 (MyT1/NZF2), a member of the neural zinc-finger (NZF) protein family, is a transcription factor that plays a central role in the developing central nervous system. It has also recently been shown that, in combination with two other transcription factors, the highly similar paralog MyT1L is able to direct the differentiation of murine and human stem cells into functional neurons. MyT1 contains seven zinc fingers (ZFs) that are highly conserved throughout the protein and throughout the NZF family. We recently presented a model for the interaction of the fifth ZF of MyT1 with a DNA sequence derived from the promoter of the retinoic acid receptor (RARE) gene. Here, we have used NMR spectroscopy, in combination with surface plasmon resonance and data-driven molecular docking, to delineate the mechanism of DNA binding for double ZF polypeptides derived from MyT1. Our data indicate that a two-ZF unit interacts with the major groove of the entire RARE motif and that both fingers bind in an identical manner and with overall two-fold rotational symmetry, consistent with the palindromic nature of the target DNA. Several key residues located in one of the irregular loops of the ZFs are utilized to achieve specific binding. Analysis of the human and mouse genomes based on our structural data reveals three putative MyT1 target genes involved in neuronal development.


Biochemistry | 2010

Engineered rings of mixed yeast Lsm proteins show differential interactions with translation factors and U-rich RNA.

Meghna Sobti; Liza Cubeddu; Paul A. Haynes; Bridget C. Mabbutt

The Lsm proteins organize as heteroheptameric ring assemblies capable of binding RNA substrates and ancillary protein factors. We have constructed simplified Lsm polyproteins that organize as multimeric ring structures as analogues of the functional Lsm complexes. Polyproteins Lsm[2+3], Lsm[4+1], and Lsm[5+6] incorporate natural sequence extensions as linker peptides between the core Lsm domains. In solution, the recombinant products organize as stable ring oligomers (75 A wide, 20 A pores) in discrete tetrameric and octameric forms. Following immobilization, the polyproteins successfully act as affinity pull-down ligands for proteins within yeast lysate, including native Lsm proteins. Interaction partners were consistent with current models of the mixed Lsm ring assembly in vivo but also suggest that dynamic rearrangements of Lsm protein complexes can occur. The Lsm polyprotein ring complexes were seen in gel shift assays to have a preference for U-rich RNA sequences, with tightest binding measured for Lsm[2+3] with U(10). Polyprotein rings containing truncated forms of Lsm1 and Lsm4 were found to associate with translation, initiation, and elongation protein factors in an RNA-dependent manner. Our findings suggest Lsm1 and/or Lsm4 can interact with translationally active mRNA.

Collaboration


Dive into the Liza Cubeddu's collaboration.

Top Co-Authors

Avatar

Derek J. Richard

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Touma

University of Western Sydney

View shared research outputs
Top Co-Authors

Avatar

Emma Bolderson

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ruvini Kariawasam

University of Western Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas W. Ashton

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge