Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derek J. Richard is active.

Publication


Featured researches published by Derek J. Richard.


Nature | 2008

Single-stranded DNA-binding protein hSSB1 is critical for genomic stability

Derek J. Richard; Emma Bolderson; Liza Cubeddu; Ross I. M. Wadsworth; Kienan Savage; Girdhar G. Sharma; Matthew L. Nicolette; Sergie Tsvetanov; Michael J. McIlwraith; Raj K. Pandita; Shunichi Takeda; Ronald T. Hay; Jean Gautier; Stephen C. West; Tanya T. Paull; Tej K. Pandita; Malcolm F. White; Kum Kum Khanna

Single-strand DNA (ssDNA)-binding proteins (SSBs) are ubiquitous and essential for a wide variety of DNA metabolic processes, including DNA replication, recombination, DNA damage detection and repair. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating nucleases, helicases and strand-exchange proteins, activating transcription and mediating protein–protein interactions. In eukaryotes, the major SSB, replication protein A (RPA), is a heterotrimer. Here we describe a second human SSB (hSSB1), with a domain organization closer to the archaeal SSB than to RPA. Ataxia telangiectasia mutated (ATM) kinase phosphorylates hSSB1 in response to DNA double-strand breaks (DSBs). This phosphorylation event is required for DNA damage-induced stabilization of hSSB1. Upon induction of DNA damage, hSSB1 accumulates in the nucleus and forms distinct foci independent of cell-cycle phase. These foci co-localize with other known repair proteins. In contrast to RPA, hSSB1 does not localize to replication foci in S-phase cells and hSSB1 deficiency does not influence S-phase progression. Depletion of hSSB1 abrogates the cellular response to DSBs, including activation of ATM and phosphorylation of ATM targets after ionizing radiation. Cells deficient in hSSB1 exhibit increased radiosensitivity, defective checkpoint activation and enhanced genomic instability coupled with a diminished capacity for DNA repair. These findings establish that hSSB1 influences diverse endpoints in the cellular DNA damage response.


Clinical Cancer Research | 2009

Recent Advances in Cancer Therapy Targeting Proteins Involved in DNA Double-Strand Break Repair

Emma Bolderson; Derek J. Richard; Bin-Bing S. Zhou; Kum Kum Khanna

Damage to genetic material represents a persistent and ubiquitous threat to genomic stability. Once DNA damage is detected, a multifaceted signaling network is activated that halts the cell cycle, initiates repair, and in some instances induces apoptotic cell death. In this article, we will review DNA damage surveillance networks, which maintain the stability of our genome, and discuss the efforts underway to identify chemotherapeutic compounds targeting the core components of DNA double-strand breaks (DSB) response pathway. The majority of tumor cells have defects in maintaining genomic stability owing to the loss of an appropriate response to DNA damage. New anticancer agents are exploiting this vulnerability of cancer cells to enhance therapeutic indexes, with limited normal tissue toxicity. Recently inhibitors of the checkpoint kinases Chk1 and Chk2 have been shown to sensitize tumor cells to DNA damaging agents. In addition, the treatment of BRCA1- or BRCA2-deficient tumor cells with poly(ADP-ribose) polymerase (PARP) inhibitors also leads to specific tumor killing. Due to the numerous roles of p53 in genomic stability and its defects in many human cancers, therapeutic agents that restore p53 activity in tumors are the subject of multiple clinical trials. In this article we highlight the proteins mentioned above and catalog several additional players in the DNA damage response pathway, including ATM, DNA-PK, and the MRN complex, which might be amenable to pharmacological interventions and lead to new approaches to sensitize cancer cells to radio- and chemotherapy. The challenge is how to identify those patients most receptive to these treatments. (Clin Cancer Res 2009;15(20):6314–20)


PLOS ONE | 2013

Generation and characterisation of cisplatin-resistant non-small cell lung cancer cell lines displaying a stem-like signature.

M.P. Barr; Steven G. Gray; Andreas Hoffmann; Ralf A. Hilger; Juergen Thomale; John D. O’Flaherty; Dean A. Fennell; Derek J. Richard; John J. O’Leary; Kenneth J. O’Byrne

Introduction Inherent and acquired cisplatin resistance reduces the effectiveness of this agent in the management of non-small cell lung cancer (NSCLC). Understanding the molecular mechanisms underlying this process may result in the development of novel agents to enhance the sensitivity of cisplatin. Methods An isogenic model of cisplatin resistance was generated in a panel of NSCLC cell lines (A549, SKMES-1, MOR, H460). Over a period of twelve months, cisplatin resistant (CisR) cell lines were derived from original, age-matched parent cells (PT) and subsequently characterized. Proliferation (MTT) and clonogenic survival assays (crystal violet) were carried out between PT and CisR cells. Cellular response to cisplatin-induced apoptosis and cell cycle distribution were examined by FACS analysis. A panel of cancer stem cell and pluripotent markers was examined in addition to the EMT proteins, c-Met and β-catenin. Cisplatin-DNA adduct formation, DNA damage (γH2AX) and cellular platinum uptake (ICP-MS) was also assessed. Results Characterisation studies demonstrated a decreased proliferative capacity of lung tumour cells in response to cisplatin, increased resistance to cisplatin-induced cell death, accumulation of resistant cells in the G0/G1 phase of the cell cycle and enhanced clonogenic survival ability. Moreover, resistant cells displayed a putative stem-like signature with increased expression of CD133+/CD44+cells and increased ALDH activity relative to their corresponding parental cells. The stem cell markers, Nanog, Oct-4 and SOX-2, were significantly upregulated as were the EMT markers, c-Met and β-catenin. While resistant sublines demonstrated decreased uptake of cisplatin in response to treatment, reduced cisplatin-GpG DNA adduct formation and significantly decreased γH2AX foci were observed compared to parental cell lines. Conclusion Our results identified cisplatin resistant subpopulations of NSCLC cells with a putative stem-like signature, providing a further understanding of the cellular events associated with the cisplatin resistance phenotype in lung cancer.


Nucleic Acids Research | 2010

Phosphorylation of Exo1 modulates homologous recombination repair of DNA double-strand breaks

Emma Bolderson; Nozomi Tomimatsu; Derek J. Richard; Didier Boucher; Rakesh K. Kumar; Tej K. Pandita; Sandeep Burma; Kum Kum Khanna

DNA double-strand break (DSB) repair via the homologous recombination pathway is a multi-stage process, which results in repair of the DSB without loss of genetic information or fidelity. One essential step in this process is the generation of extended single-stranded DNA (ssDNA) regions at the break site. This ssDNA serves to induce cell cycle checkpoints and is required for Rad51 mediated strand invasion of the sister chromatid. Here, we show that human Exonuclease 1 (Exo1) is required for the normal repair of DSBs by HR. Cells depleted of Exo1 show chromosomal instability and hypersensitivity to ionising radiation (IR) exposure. We find that Exo1 accumulates rapidly at DSBs and is required for the recruitment of RPA and Rad51 to sites of DSBs, suggesting a role for Exo1 in ssDNA generation. Interestingly, the phosphorylation of Exo1 by ATM appears to regulate the activity of Exo1 following resection, allowing optimal Rad51 loading and the completion of HR repair. These data establish a role for Exo1 in resection of DSBs in human cells, highlighting the critical requirement of Exo1 for DSB repair via HR and thus the maintenance of genomic stability.


Frontiers in Oncology | 2014

Functions and therapeutic roles of exosomes in cancer.

Jacob A. Tickner; Aaron J. Urquhart; Sally-Anne Stephenson; Derek J. Richard; Kenneth J. O’Byrne

The role of exosomes in cancer development has become the focus of much research, due to the many emerging roles possessed by exosomes. These micro-vesicles that are ubiquitously released in to the extracellular milieu, have been found to regulate immune system function, particularly in tumorigenesis, as well as conditioning future metastatic sites for the attachment and growth of tumor tissue. Through an interaction with a range of host tissue, exosomes are able to generate a pro-tumor environment that is essential for carcinogenesis. Herein, we discuss the contents of exosomes and their contribution to tumorigenesis, as well as their role in chemotherapeutic resistance and the development of novel cancer treatments and the identification of cancer biomarkers.


Microbiology | 1999

Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli.

Derek J. Richard; Gary Sawers; Frank Sargent; Laura Mcwalter; David H. Boxer

Synthesis of the [NiFe] hydrogenases 1 and 2 of Escherichia coli is induced in response to anaerobiosis and is repressed when nitrate is present in the growth medium. The hydrogenase 1 and hydrogenase 2 enzymes are encoded by the polycistronic hyaABCDEF and hybOABCDEFG operons, respectively. Primer extension analysis was used to determine the initiation site of transcription of both operons. This permitted the construction of single-copy lacZ operon fusions, which were used to examine the transcriptional regulation of the two operons. Expression of both was induced by anaerobiosis and repressed by nitrate, which is in complete accord with earlier biochemical studies. Anaerobic induction of the hyb operon was only partially dependent on the FNR protein and, surprisingly, was enhanced by an arcA mutation. This latter result indicated that ArcA suppresses anaerobic hyb expression and that a further factor, which remains to be identified, is involved in controlling anaerobic induction of operon expression. Nitrate repression of hyb expression was mediated by the NarL/NarX and NarP/NarQ two-component regulatory systems. Remarkably, a narP mutant lacked anaerobic induction of hyb expression, even in the absence of added nitrate. Anaerobic induction of hya expression was dependent on the ArcA and AppY regulators, which confirms earlier observations by other authors. Nitrate repression of the hya operon was mediated by both NarL and NarP. Taken together, these data indicate that although the hya and hyb operons share common regulators, there are important differences in the control of expression of the individual operons.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Structure of Hjc, a Holliday junction resolvase, from Sulfolobus solfataricus.

Charles S. Bond; Mamuka Kvaratskhelia; Derek J. Richard; Malcolm F. White; William N. Hunter

The 2.15-Å structure of Hjc, a Holliday junction-resolving enzyme from the archaeon Sulfolobus solfataricus, reveals extensive structural homology with a superfamily of nucleases that includes type II restriction enzymes. Hjc is a dimer with a large DNA-binding surface consisting of numerous basic residues surrounding the metal-binding residues of the active sites. Residues critical for catalysis, identified on the basis of sequence comparisons and site-directed mutagenesis studies, are clustered to produce two active sites in the dimer, about 29 Å apart, consistent with the requirement for the introduction of paired nicks in opposing strands of the four-way DNA junction substrate. Hjc displays similarity to the restriction endonucleases in the way its specific DNA-cutting pattern is determined but uses a different arrangement of nuclease subunits. Further structural similarity to a broad group of metal/phosphate-binding proteins, including conservation of active-site location, is observed. A high degree of conservation of surface electrostatic character is observed between Hjc and T4-phage endonuclease VII despite a complete lack of structural homology. A model of the Hjc–Holliday junction complex is proposed, based on the available functional and structural data.


Critical Reviews in Biochemistry and Molecular Biology | 2009

Multiple human single-stranded DNA binding proteins function in genome maintenance: structural, biochemical and functional analysis

Derek J. Richard; Emma Bolderson; Kum Kum Khanna

DNA exists predominantly in a duplex form that is preserved via specific base pairing. This base pairing affords a considerable degree of protection against chemical or physical damage and preserves coding potential. However, there are many situations, e.g. during DNA damage and programmed cellular processes such as DNA replication and transcription, in which the DNA duplex is separated into two single-stranded DNA (ssDNA) strands. This ssDNA is vulnerable to attack by nucleases, binding by inappropriate proteins and chemical attack. It is very important to control the generation of ssDNA and protect it when it forms, and for this reason all cellular organisms and many viruses encode a ssDNA binding protein (SSB). All known SSBs use an oligosaccharide/oligonucleotide binding (OB)-fold domain for DNA binding. SSBs have multiple roles in binding and sequestering ssDNA, detecting DNA damage, stimulating strand-exchange proteins and helicases, and mediation of protein–protein interactions. Recently two additional human SSBs have been identified that are more closely related to bacterial and archaeal SSBs. Prior to this it was believed that replication protein A, RPA, was the only human equivalent of bacterial SSB. RPA is thought to be required for most aspects of DNA metabolism including DNA replication, recombination and repair. This review will discuss in further detail the biological pathways in which human SSBs function.


Journal of Biological Chemistry | 2009

HSSB1 and hSSB2 form similar multiprotein complexes that participate in DNA damage response.

Yongjiang Li; Emma Bolderson; Rakesh K. Kumar; Parameswary A. Muniandy; Yutong Xue; Derek J. Richard; Michael M. Seidman; Tej K. Pandita; Kum Kum Khanna; Weidong Wang

hSSB1 (human single strand DNA-binding protein 1) has been shown to participate in homologous recombination (HR)-dependent repair of DNA double strand breaks (DSBs) and ataxia telangiectasia-mutated (ATM)-mediated checkpoint pathways. Here we present evidence that hSSB2, a homolog of hSSB1, plays a role similar to hSSB1 in DNA damage-response pathways. This was evidenced by findings that hSSB2-depleted cells resemble hSSB1-depleted cells in hypersensitivity to DNA-damaging reagents, reduced efficiency in HR-dependent repair of DSBs, and defective ATM-dependent phosphorylation. Notably, hSSB1 and hSSB2 form separate complexes with two identical proteins, INTS3 and hSSBIP1 (C9ORF80). Cells depleted of INTS3 and hSSBIP1 also exhibited hypersensitivity to DNA damage reagents, chromosomal instability, and reduced ATM-dependent phosphorylation. hSSBIP1 was rapidly recruited to laser-induced DSBs, a feature also similar to that reported for hSSB1. Depletion of INTS3 decreased the stability of hSSB1 and hSSBIP1, suggesting that INTS3 may provide a scaffold to allow proper assembly of the hSSB complexes. Thus, our data demonstrate that hSSB1 and hSSB2 form two separate complexes with similar structures, and both are required for efficient HR-dependent repair of DSBs and ATM-dependent signaling pathways.


Journal of Thoracic Oncology | 2012

The Cancer Stem-Cell Hypothesis: Its Emerging Role in Lung Cancer Biology and Its Relevance for Future Therapy

John D. O’Flaherty; M.P. Barr; Dean A. Fennell; Derek J. Richard; John V. Reynolds; John J. O’Leary; Kenneth J. O’Byrne

The cancer stem-cell (CSC) hypothesis suggests that there is a small subset of cancer cells that are responsible for tumor initiation and growth, possessing properties such as indefinite self-renewal, slow replication, intrinsic resistance to chemotherapy and radiotherapy, and an ability to give rise to differentiated progeny. Through the use of xenotransplantation assays, putative CSCs have been identified in many cancers, often identified by markers usually expressed in normal stem cells. This is also the case in lung cancer, and the accumulated data on side population cells, CD133, CD166, CD44 and ALDH1 are beginning to clarify the true phenotype of the lung cancer stem cell. Furthermore, it is now clear that many of the pathways of normal stem cells, which guide cellular proliferation, differentiation, and apoptosis are also prominent in CSCs; the Hedgehog (Hh), Notch, and Wnt signaling pathways being notable examples. The CSC hypothesis suggests that there is a small reservoir of cells within the tumor, which are resistant to many standard therapies, and can give rise to new tumors in the form of metastases or relapses after apparent tumor regression. Therapeutic interventions that target CSC pathways are still in their infancy and clinical data of their efficacy remain limited. However Smoothened inhibitors, gamma-secretase inhibitors, anti-DLL4 antagonists, Wnt antagonists, and CBP/β-catenin inhibitors have all shown promising anticancer effects in early studies. The evidence to support the emerging picture of a lung cancer CSC phenotype and the development of novel therapeutic strategies to target CSCs are described in this review.

Collaboration


Dive into the Derek J. Richard's collaboration.

Top Co-Authors

Avatar

Kenneth J. O'Byrne

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Kenneth J. O’Byrne

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Emma Bolderson

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mark N. Adams

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Kum Kum Khanna

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Joshua T. Burgess

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Sarah-Louise Ryan

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kienan Savage

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge