Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lizhi Cao is active.

Publication


Featured researches published by Lizhi Cao.


Molecular Aspects of Medicine | 2014

HMGB1 in Health and Disease

Rui Kang; Ruochan Chen; Qiuhong Zhang; Wen Hou; Sha Wu; Lizhi Cao; Jin Huang; Yan Yu; Xue-Gong Fan; Zhengwen Yan; Xiaofang Sun; Haichao Wang; Qingde Wang; Allan Tsung; Timothy R. Billiar; Herbert J. Zeh; Michael T. Lotze; Daolin Tang

Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1s multiple functions.


Cancer Research | 2012

HMGB1 Promotes Drug Resistance in Osteosarcoma

Jun Huang; Jiangdong Ni; Ke Liu; Yan Yu; Min Xie; Rui Kang; Philip Vernon; Lizhi Cao; Daolin Tang

Osteosarcoma is the most commonly occurring bone cancer in children and adolescents. Unfortunately, treatment failures are common due to the development of chemoresistance, for which the underlying molecular mechanisms remain unclear. In this study, we implicate the DNA-binding protein HMGB1, which also exerts immunoregulatory effects in its secreted form, in the development of drug resistance in osteosarcoma. Anticancer agents including doxorubicin, cisplatin, and methotrexate each induced HMGB1 upregulation in human osteosarcoma cells, and RNA interference-mediated knockdown of HMGB1 restored the chemosensitivity of osteosarcoma cells in vivo and in vitro. Mechanistic investigation revealed that HMGB1 increased drug resistance by inducing autophagy, an intracellular self-defense mechanism known to confer drug resistance. We found that HMGB1 bound to the autophagy regulator Beclin1 and regulated the formation of the Beclin1-PI3KC3 [PI3KC3, phosphatidylinositol 3-kinase class 3] complex that facilitates autophagic progression. In addition, we found that interaction between HMGB1 and Beclin1 relied upon the autophagic complex ULK1-mAtg13-FIP200. Therefore, through its role as a regulator of autophagy, HMGB1 is a critical factor in the development of chemoresistance, and it offers a novel target for improving osteosarcoma therapy.


Nature Communications | 2014

PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis

Liangchun Yang; Min Xie; Minghua Yang; Y Yu; Shan Zhu; Wen-Shang Hou; Rui Kang; Michael T. Lotze; Timothy R. Billiar; Haichao Wang; Lizhi Cao; Daolin Tang

Increasing evidence suggests the important role of metabolic reprogramming in the regulation of the innate inflammatory response, but the underlying mechanism remains unclear. Here, we provide evidence to support a novel role for the pyruvate kinase M2 (PKM2)-mediated Warburg effect, namely aerobic glycolysis, in the regulation of high mobility group box 1 (HMGB1) release. PKM2 interacts with hypoxia-inducible factor 1α (HIF1α) and activates the HIF-1α-dependent transcription of enzymes necessary for aerobic glycolysis in macrophages. Knockdown of PKM2, HIF1α, and glycolysis-related genes uniformly decreases lactate production and HMGB1 release. Similarly, a potential PKM2 inhibitor, shikonin, reduces serum lactate and HMGB1 levels and protects mice from lethal endotoxemia and sepsis. Collectively, these findings shed light on a novel mechanism for metabolic control of inflammation by regulating HMGB1 release and highlight the importance of targeting aerobic glycolysis in the treatment of sepsis and other inflammatory diseases.


Autophagy | 2011

Autophagy regulates myeloid cell differentiation by p62/SQSTM1-mediated degradation of PML-RARα oncoprotein

Zhuo Wang; Lizhi Cao; Rui Kang; Minghua Yang; Liying Liu; Yiming Zhao; Yan Yu; Min Xie; Xiaocheng Yin; Kristen M. Livesey; Daolin Tang

PML-RARα oncoprotein is a fusion protein of promyelocytic leukemia (PML) and the retinoic acid receptor-α (RARα) and causes acute promyelocytic leukemias (APL). A hallmark of all-trans retinoic acid (ATRA) responses in APL is PML-RARα degradation which promotes cell differentiation. Here, we demonstrated that autophagy is a crucial regulator of PML-RARα degradation. Inhibition of autophagy by short hairpin (sh) RNA that target essential autophagy genes such as Atg1, Atg5 and PI3KC3 and by autophagy inhibitors (e.g. 3-methyladenine), blocked PML-RARα degradation and subsequently granulocytic differentiation of human myeloid leukemic cells. In contrast, rapamycin, the mTOR kinase inhibitor, enhanced autophagy and promoted ATRA-induced PML-RARα degradation and myeloid cell differentiation. Moreover, PML-RARα co-immunoprecipitated with ubiquitin-binding adaptor protein p62/SQSTM1, which is degraded through autophagy. Furthermore, knockdown of p62/SQSTM1 inhibited ATRA-induced PML-RARα degradation and myeloid cell differentiation. The identification of PML-RARα as a target of autophagy provides new insight into the mechanism of action of ATRA and its specificity for APL.


Oncogene | 2015

HSPB1 as a novel regulator of ferroptotic cancer cell death.

Xiaofang Sun; Zhanhui Ou; Min Xie; Rui Kang; Yong Fan; Xiaohua Niu; Haichao Wang; Lizhi Cao; Daolin Tang

Ferroptosis is an iron-dependent form of non-apoptotic cell death, but its molecular mechanism remains largely unknown. Here, we demonstrate that heat shock protein beta-1 (HSPB1) is a negative regulator of ferroptotic cancer cell death. Erastin, a specific ferroptosis-inducing compound, stimulates heat shock factor 1 (HSF1)-dependent HSPB1 expression in cancer cells. Knockdown of HSF1 and HSPB1 enhances erastin-induced ferroptosis, whereas heat shock pretreatment and overexpression of HSPB1 inhibits erastin-induced ferroptosis. Protein kinase C-mediated HSPB1 phosphorylation confers protection against ferroptosis by reducing iron-mediated production of lipid reactive oxygen species. Moreover, inhibition of the HSF1–HSPB1 pathway and HSPB1 phosphorylation increases the anticancer activity of erastin in human xenograft mouse tumor models. Our findings reveal an essential role for HSPB1 in iron metabolism with important effects on ferroptosis-mediated cancer therapy.


Autophagy | 2012

Targeting HMGB1-mediated autophagy as a novel therapeutic strategy for osteosarcoma.

Jun Huang; Ke Liu; Yan Yu; Min Xie; Rui Kang; Philip Vernon; Lizhi Cao; Daolin Tang; Jiangdong Ni

Autophagy is a catabolic process critical to maintaining cellular homeostasis and responding to cytotoxic insult. Autophagy is recognized as “programmed cell survival” in contrast to apoptosis or programmed cell death. Upregulation of autophagy has been observed in many types of cancers and has been demonstrated to both promote and inhibit antitumor drug resistance depending to a large extent on the nature and duration of the treatment-induced metabolic stress as well as the tumor type. Cisplatin, doxorubicin and methotrexate are commonly used anticancer drugs in osteosarcoma, the most common form of childhood and adolescent cancer. Our recent study demonstrated that high mobility group box 1 protein (HMGB1)-mediated autophagy is a significant contributor to drug resistance in osteosarcoma cells. Inhibition of both HMGB1 and autophagy increase the drug sensitivity of osteosarcoma cells in vivo and in vitro. Furthermore, we demonstrated that the ULK1-FIP200 complex is required for the interaction between HMGB1 and BECN1, which then promotes BECN1-PtdIns3KC3 complex formation during autophagy. Thus, these findings provide a novel mechanism of osteosarcoma resistance to therapy facilitated by HMGB1-mediated autophagy and provide a new target for the control of drug-resistant osteosarcoma patients.


Autophagy | 2012

microRNA 30A promotes autophagy in response to cancer therapy

Y Yu; Lizhi Cao; Liangchun Yang; Rui Kang; Michael T. Lotze; Daolin Tang

microRNAs (miRNAs) are a class of small regulatory RNAs that regulate gene expression at the post-transcriptional level. miRNAs play important roles in the regulation of development, growth, and metastasis of cancer, and in determining the response of tumor cells to anticancer therapy. In recent years, they have also emerged as important regulators of autophagy, a lysosomal-mediated pathway that contributes to degradation of a cells own components. Imatinib, a targeted competitive inhibitor of the BCR-ABL1 tyrosine kinase, has revolutionized the clinical treatment of chronic myelogenous leukemia (CML). We demonstrate that MIR30A-mediated autophagy enhances imatinib resistance against CML including primary stem and progenitor cells. MIR30A, but not MIR101, is a potent inhibitor of autophagy by selectively downregulating BECN1 and ATG5 expression in CML cells. MIR30A mimics, as well as knockdown of BECN1 and ATG5, increases intrinsic apoptotic pathways. In contrast, the antagomir-30A increases autophagy and inhibits intrinsic apoptotic pathways, confirming that autophagy serves to protect against apoptosis. Taken together, these data clarify some of the underlying molecular mechanisms of tyrosine kinase inhibitor-induced autophagy.


Nature Communications | 2016

PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation

Min Xie; Yan Yu; Rui Kang; Shan Zhu; Liangchun Yang; Ling Zeng; Xiaofang Sun; Minghua Yang; Timothy R. Billiar; Haichao Wang; Lizhi Cao; Jianxin Jiang; Daolin Tang

Sepsis, severe sepsis and septic shock are the main cause of mortality in non-cardiac intensive care units. Immunometabolism has been linked to sepsis; however, the precise mechanism by which metabolic reprogramming regulates the inflammatory response is unclear. Here we show that aerobic glycolysis contributes to sepsis by modulating inflammasome activation in macrophages. PKM2-mediated glycolysis promotes inflammasome activation by modulating EIF2AK2 phosphorylation in macrophages. Pharmacological and genetic inhibition of PKM2 or EIF2AK2 attenuates NLRP3 and AIM2 inflammasomes activation, and consequently suppresses the release of IL-1β, IL-18 and HMGB1 by macrophages. Pharmacological inhibition of the PKM2–EIF2AK2 pathway protects mice from lethal endotoxemia and polymicrobial sepsis. Moreover, conditional knockout of PKM2 in myeloid cells protects mice from septic death induced by NLRP3 and AIM2 inflammasome activation. These findings define an important role of PKM2 in immunometabolism and guide future development of therapeutic strategies to treat sepsis.


Autophagy | 2014

MIR34A regulates autophagy and apoptosis by targeting HMGB1 in the retinoblastoma cell.

Ke Liu; Jun Huang; Min Xie; Yan Yu; Shan Zhu; Rui Kang; Lizhi Cao; Daolin Tang; Xuanchu Duan

MIR34A (microRNA 34a) is a tumor suppressor gene, but how it regulates chemotherapy response and resistance is not completely understood. Here, we show that the microRNA MIR34A-dependent high mobility group box 1 (HMGB1) downregulation inhibits autophagy and enhances chemotherapy-induced apoptosis in the retinoblastoma cell. HMGB1 is a multifaceted protein with a key role in autophagy, a self-degradative, homeostatic process with a context-specific role in cancer. MIR34A inhibits HMGB1 expression through a direct MIR34A-binding site within the HMGB1 3′ untranslated region. MIR34A inhibition of HMGB1 leads to a decrease in autophagy under starvation conditions or chemotherapy treatment. Inhibition of autophagy promotes oxidative injury and DNA damage and increases subsequent CASP3 activity, CASP3 cleavage, and PARP1 [poly (ADP-ribose) polymerase 1] cleavage, which are important to the apoptotic process. Finally, upregulation of MIR34A, knockdown of HMGB1, or inhibition of autophagy (e.g., knockdown of ATG5 and BECN1) restores chemosensitivity and enhances tumor cell death in the retinoblastoma cell. These data provide new insights into the mechanisms governing the regulation of HMGB1 expression by microRNA and their possible contribution to autophagy and drug resistance.


Biochemical Pharmacology | 2013

Chloroquine Inhibits HMGB1 Inflammatory Signaling and Protects Mice from Lethal Sepsis

Minghua Yang; Lizhi Cao; Min Xie; Yan Yu; Rui Kang; Liangchun Yang; Mingyi Zhao; Daolin Tang

Sepsis is caused by an overwhelming immune response to bacterial infection. The discovery of high mobility group box 1 (HMGB1) as a late mediator of lethal sepsis has prompted investigation into the development of new therapeutics which specifically target this protein. Here, we show that chloroquine, an anti-malarial drug, prevents lethality in mice with established endotoxemia or sepsis. This effect is still observed even if administration of chloroquine is delayed. The protective effects of chloroquine were mediated through inhibition of HMGB1 release in macrophages, monocytes, and endothelial cells, thereby preventing its cytokine-like activities. As an inhibitor of autophagy, chloroquine specifically inhibited HMGB1-induced Iκ-B degradation and NF-κB activation. These findings define a novel mechanism for the anti-inflammatory effects of chloroquine and also suggest a new potential clinical use for this drug in the setting of sepsis.

Collaboration


Dive into the Lizhi Cao's collaboration.

Top Co-Authors

Avatar

Rui Kang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Daolin Tang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Min Xie

Central South University

View shared research outputs
Top Co-Authors

Avatar

Minghua Yang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Liangchun Yang

Central South University

View shared research outputs
Top Co-Authors

Avatar

Yan Yu

Central South University

View shared research outputs
Top Co-Authors

Avatar

Shan Zhu

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Haichao Wang

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liying Liu

Central South University

View shared research outputs
Researchain Logo
Decentralizing Knowledge