Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lloyd T. Lam is active.

Publication


Featured researches published by Lloyd T. Lam.


Nature Medicine | 2013

ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets

Andrew J. Souers; Joel D. Leverson; Erwin R. Boghaert; Scott L. Ackler; Nathaniel D. Catron; Jun Chen; Brian D Dayton; H. Ding; Sari H. Enschede; Wayne J. Fairbrother; David C. S. Huang; Sarah G. Hymowitz; Sha Jin; Seong Lin Khaw; Peter Kovar; Lloyd T. Lam; Jackie Lee; Heather Maecker; Kennan Marsh; Kylie D. Mason; Michael J. Mitten; Paul Nimmer; Anatol Oleksijew; Chang H. Park; Cheol-Min Park; Darren C. Phillips; Andrew W. Roberts; Deepak Sampath; John F. Seymour; Morey L. Smith

Proteins in the B cell CLL/lymphoma 2 (BCL-2) family are key regulators of the apoptotic process. This family comprises proapoptotic and prosurvival proteins, and shifting the balance toward the latter is an established mechanism whereby cancer cells evade apoptosis. The therapeutic potential of directly inhibiting prosurvival proteins was unveiled with the development of navitoclax, a selective inhibitor of both BCL-2 and BCL-2–like 1 (BCL-XL), which has shown clinical efficacy in some BCL-2–dependent hematological cancers. However, concomitant on-target thrombocytopenia caused by BCL-XL inhibition limits the efficacy achievable with this agent. Here we report the re-engineering of navitoclax to create a highly potent, orally bioavailable and BCL-2–selective inhibitor, ABT-199. This compound inhibits the growth of BCL-2–dependent tumors in vivo and spares human platelets. A single dose of ABT-199 in three patients with refractory chronic lymphocytic leukemia resulted in tumor lysis within 24 h. These data indicate that selective pharmacological inhibition of BCL-2 shows promise for the treatment of BCL-2–dependent hematological cancers.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways

Georg Lenz; George W. Wright; N. C. Tolga Emre; Holger Kohlhammer; Sandeep S. Dave; R. Eric Davis; Shannon Carty; Lloyd T. Lam; Arthur L. Shaffer; Wenming Xiao; John Powell; Andreas Rosenwald; German Ott; Hans Konrad Müller-Hermelink; Randy D. Gascoyne; Joseph M. Connors; Elias Campo; Elaine S. Jaffe; Jan Delabie; Erlend B. Smeland; Lisa M. Rimsza; Richard I. Fisher; Dennis D. Weisenburger; Wing C. Chan; Louis M. Staudt

Gene-expression profiling has been used to define 3 molecular subtypes of diffuse large B-cell lymphoma (DLBCL), termed germinal center B-cell-like (GCB) DLBCL, activated B-cell-like (ABC) DLBCL, and primary mediastinal B-cell lymphoma (PMBL). To investigate whether these DLBCL subtypes arise by distinct pathogenetic mechanisms, we analyzed 203 DLBCL biopsy samples by high-resolution, genome-wide copy number analysis coupled with gene-expression profiling. Of 272 recurrent chromosomal aberrations that were associated with gene-expression alterations, 30 were used differentially by the DLBCL subtypes (P < 0.006). An amplicon on chromosome 19 was detected in 26% of ABC DLBCLs but in only 3% of GCB DLBCLs and PMBLs. A highly up-regulated gene in this amplicon was SPIB, which encodes an ETS family transcription factor. Knockdown of SPIB by RNA interference was toxic to ABC DLBCL cell lines but not to GCB DLBCL, PMBL, or myeloma cell lines, strongly implicating SPIB as an oncogene involved in the pathogenesis of ABC DLBCL. Deletion of the INK4a/ARF tumor suppressor locus and trisomy 3 also occurred almost exclusively in ABC DLBCLs and was associated with inferior outcome within this subtype. FOXP1 emerged as a potential oncogene in ABC DLBCL that was up-regulated by trisomy 3 and by more focal high-level amplifications. In GCB DLBCL, amplification of the oncogenic mir-17–92 microRNA cluster and deletion of the tumor suppressor PTEN were recurrent, but these events did not occur in ABC DLBCL. Together, these data provide genetic evidence that the DLBCL subtypes are distinct diseases that use different oncogenic pathways.


Science | 2008

Oncogenic CARD11 mutations in human diffuse large B cell lymphoma

Georg Lenz; R. Eric Davis; Vu N. Ngo; Lloyd T. Lam; Thaddeus C. George; George W. Wright; Sandeep S. Dave; Hong Zhao; Weihong Xu; Andreas Rosenwald; German Ott; Hans Konrad Müller-Hermelink; Randy D. Gascoyne; Joseph M. Connors; Lisa M. Rimsza; Elias Campo; Elaine S. Jaffe; Jan Delabie; Erlend B. Smeland; Richard I. Fisher; Wing C. Chan; Louis M. Staudt

Diffuse large B cell lymphoma (DLBCL) is the most common form of non-Hodgkins lymphoma. In the least curable (ABC) subtype of DLBCL, survival of the malignant cells is dependent on constitutive activation of the nuclear factor–κB (NF-κB) signaling pathway. In normal B cells, antigen receptor–induced NF-κB activation requires CARD11, a cytoplasmic scaffolding protein. To determine whether CARD11 contributes to tumorigenesis, we sequenced the CARD11 gene in human DLBCL tumors. We detected missense mutations in 7 of 73 ABC DLBCL biopsies (9.6%), all within exons encoding the coiled-coil domain. Experimental introduction of CARD11 coiled-coil domain mutants into lymphoma cell lines resulted in constitutive NF-κB activation and enhanced NF-κB activity upon antigen receptor stimulation. These results demonstrate that CARD11 is a bona fide oncogenein DLBCL, providing a genetic rationale for the development of pharmacological inhibitors of the CARD11 pathway for DLBCL therapy.


Nature | 2006

A loss-of-function RNA interference screen for molecular targets in cancer

Vu N. Ngo; R. Eric Davis; Laurence Lamy; Xin Yu; Hong Zhao; Georg Lenz; Lloyd T. Lam; Sandeep S. Dave; Liming Yang; John Powell; Louis M. Staudt

The pursuit of novel therapeutic agents in cancer relies on the identification and validation of molecular targets. Hallmarks of cancer include self-sufficiency in growth signals and evasion from apoptosis; genes that regulate these processes may be optimal for therapeutic attack. Here we describe a loss-of-function screen for genes required for the proliferation and survival of cancer cells using an RNA interference library. We used a doxycycline-inducible retroviral vector for the expression of small hairpin RNAs (shRNAs) to construct a library targeting 2,500 human genes. We used retroviral pools from this library to infect cell lines representing two distinct molecular subgroups of diffuse large B-cell lymphoma (DLBCL), termed activated B-cell-like DLBCL and germinal centre B-cell-like DLBCL. Each vector was engineered to contain a unique 60-base-pair ‘bar code’, allowing the abundance of an individual shRNA vector within a population of transduced cells to be measured using microarrays of the bar-code sequences. We observed that a subset of shRNA vectors was depleted from the transduced cells after three weeks in culture only if shRNA expression was induced. In activated B-cell-like DLBCL cells, but not germinal centre B-cell-like DLBCL cells, shRNAs targeting the NF-κB pathway were depleted, in keeping with the essential role of this pathway in the survival of activated B-cell-like DLBCL. This screen uncovered CARD11 as a key upstream signalling component responsible for the constitutive IκB kinase activity in activated B-cell-like DLBCL. The methodology that we describe can be used to establish a functional taxonomy of cancer and help reveal new classes of therapeutic targets distinct from known oncogenes.


Genome Biology | 2001

Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol

Lloyd T. Lam; Oxana K. Pickeral; Amy C Peng; Andreas Rosenwald; Elaine M. Hurt; Jena M. Giltnane; Lauren Averett; Hong Zhao; R. Eric Davis; Mohan Sathyamoorthy; Larry M. Wahl; Eric D Harris; Judy A Mikovits; Anne Monks; Melinda G. Hollingshead; Edward A. Sausville; Louis M. Staudt

BackgroundFlavopiridol, a flavonoid currently in cancer clinical trials, inhibits cyclin-dependent kinases (CDKs) by competitively blocking their ATP-binding pocket. However, the mechanism of action of flavopiridol as an anti-cancer agent has not been fully elucidated.ResultsUsing DNA microarrays, we found that flavopiridol inhibited gene expression broadly, in contrast to two other CDK inhibitors, roscovitine and 9-nitropaullone. The gene expression profile of flavopiridol closely resembled the profiles of two transcription inhibitors, actinomycin D and 5,6-dichloro-1-β-D-ribofuranosyl-benzimidazole (DRB), suggesting that flavopiridol inhibits transcription globally. We were therefore able to use flavopiridol to measure mRNA turnover rates comprehensively and we found that different functional classes of genes had distinct distributions of mRNA turnover rates. In particular, genes encoding apoptosis regulators frequently had very short half-lives, as did several genes encoding key cell-cycle regulators. Strikingly, genes that were transcriptionally inducible were disproportionately represented in the class of genes with rapid mRNA turnover.ConclusionsThe present genomic-scale measurement of mRNA turnover uncovered a regulatory logic that links gene function with mRNA half-life. The observation that transcriptionally inducible genes often have short mRNA half-lives demonstrates that cells have a coordinated strategy to rapidly modulate the mRNA levels of these genes. In addition, the present results suggest that flavopiridol may be more effective against types of cancer that are highly dependent on genes with unstable mRNAs.


Immunity | 2001

Signatures of the immune response.

Arthur L. Shaffer; Andreas Rosenwald; Elaine M. Hurt; Jena M. Giltnane; Lloyd T. Lam; Oxana K. Pickeral; Louis M. Staudt

A compendium of global gene expression measurements from DNA microarray analysis of immune cells identifies gene expression signatures defining various lineages, differentiation stages, and signaling pathways. Germinal center (GC) B cells represent a discrete stage of differentiation with a unique gene expression signature. This includes genes involved in proliferation, as evidenced by high expression of G2/M phase regulators and low expression of ribosomal and metabolic genes that are transcriptional targets of c-myc. GC B cells also lack expression of the NF-kappaB signature genes, which may favor apoptosis. Finally, the transcriptional repression signature of BCL-6 reveals how this factor can prevent terminal differentiation of B cells and cause B cell lymphomas.


Cell | 2007

Ribosomal Protein S3: A KH Domain Subunit in NF-κB Complexes that Mediates Selective Gene Regulation

Fengyi Wan; D. Eric Anderson; Robert A. Barnitz; Andrew L. Snow; Nicolas Bidère; Lixin Zheng; Vijay Hegde; Lloyd T. Lam; Louis M. Staudt; David Levens; Walter A. Deutsch; Michael J. Lenardo

NF-kappaB is a DNA-binding protein complex that transduces a variety of activating signals from the cytoplasm to specific sets of target genes. To understand the preferential recruitment of NF-kappaB to specific gene regulatory sites, we used NF-kappaB p65 in a tandem affinity purification and mass spectrometry proteomic screen. We identified ribosomal protein S3 (RPS3), a KH domain protein, as a non-Rel subunit of p65 homodimer and p65-p50 heterodimer DNA-binding complexes that synergistically enhances DNA binding. RPS3 knockdown impaired NF-kappaB-mediated transcription of selected p65 target genes but not nuclear shuttling or global protein translation. Rather, lymphocyte-activating stimuli caused nuclear translocation of RPS3, parallel to p65, to form part of NF-kappaB bound to specific regulatory sites in chromatin. Thus, RPS3 is an essential but previously unknown subunit of NF-kappaB involved in the regulation of key genes in rapid cellular activation responses. Our observations provide insight into how NF-kappaB selectively controls gene expression.


Immunological Reviews | 2006

A library of gene expression signatures to illuminate normal and pathological lymphoid biology

Arthur L. Shaffer; George E. Wright; Liming Yang; John Powell; Vu N. Ngo; Laurence Lamy; Lloyd T. Lam; R. Eric Davis; Louis M. Staudt

Summary:  Genomics has provided a lever to pry open lymphoid cells and examine their regulatory biology. The large body of available gene expression data has also allowed us to define the of coordinately expressed genes, termed gene expression signatures, which characterize the states of cellular physiology that reflect cellular differentiation, activation of signaling pathways, and the action of transcription factors. Gene expression signatures that reflect the action of individual transcription factors can be defined by perturbing transcription factor function using RNA interference (RNAi), small‐molecule inhibition, and dominant‐negative approaches. We have used this methodology to define gene expression signatures of various transcription factors controlling B‐cell differentiation and activation, including BCL‐6, B lymphocyte‐induced maturation protein‐1 (Blimp‐1), X‐box binding protein‐1 (XBP1), nuclear factor‐κB (NF‐κB), and c‐myc. We have also curated a wide variety of gene expression signatures from the literature and assembled these into a signature database. Statistical methods can define whether any signature in this database is differentially expressed in independent biological samples, an approach we have used to gain mechanistic insights into the origin and clinical behavior of B‐cell lymphomas. We also discuss the use of genomic‐scale RNAi libraries to identify genes and pathways that may serve as therapeutic targets in B‐cell malignancies.


Journal of Biological Chemistry | 2003

Analysis of γc-Family Cytokine Target Genes IDENTIFICATION OF DUAL-SPECIFICITY PHOSPHATASE 5 (DUSP5) AS A REGULATOR OF MITOGEN-ACTIVATED PROTEIN KINASE ACTIVITY IN INTERLEUKIN-2 SIGNALING

Panu E. Kovanen; Andreas Rosenwald; Jacqueline Fu; Elaine M. Hurt; Lloyd T. Lam; Jena M. Giltnane; George E. Wright; Louis M. Staudt; Warren J. Leonard

Interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21 form a family of cytokines based on their sharing the common cytokine receptor γ chain, γc, which is mutated in X-linked severe combined immunodeficiency (SCID). As a step toward further elucidating the mechanism of action of these cytokines in T-cell biology, we compared the gene expression profiles of IL-2, IL-4, IL-7, and IL-15 in T cells using cDNA microarrays. IL-2, IL-7, and IL-15 each induced a highly similar set of genes, whereas IL-4 induced distinct genes correlating with differential STAT protein activation by this cytokine. One gene induced by IL-2, IL-7, and IL-15 but not IL-4 was dual-specificity phosphatase 5 (DUSP5). In IL-2-dependent CTLL-2 cells, we show that IL-2-induced ERK-1/2 activity was inhibited by wild type DUSP5 but markedly increased by an inactive form of DUSP5, suggesting a negative feedback role for DUSP5 in IL-2 signaling. Our findings provide insights into the shared versus distinctive actions by different members of the γc family of cytokines. Moreover, we have identified a DUSP5-dependent negative regulatory pathway for MAPK activity in T cells.


Oncogene | 2011

Mcl-1 is critical for survival in a subgroup of non-small-cell lung cancer cell lines

Haichao Zhang; S Guttikonda; L Roberts; T Uziel; Dimitri Semizarov; Steven W. Elmore; Joel D. Leverson; Lloyd T. Lam

Non-small-cell lung cancer (NSCLC) is the most deadly type of cancer in the United States and worldwide. Although new therapy is available, the survival rate of NSCLC patients remains low. One hallmark of cancer cells is defects in the apoptotic cell death program. In this study, we investigate the role of B-cell lymphoma 2 (Bcl-2) family members Bcl-2, Bcl-xL and Mcl-1, known to regulate cell survival and death, in a panel of fourteen NSCLC cell lines. NSCLC cell lines express high levels of Mcl-1 and Bcl-xL, but not Bcl-2. Silencing the expression of Mcl-1 with small interfering RNA (siRNA) oligonucleotides potently killed a subgroup of NSCLC cell lines. In contrast, Bcl-xL siRNA had no effect in these lines unless Mcl-1 siRNA was also introduced. Interestingly, high MCL1 to BCL-xl messenger RNA determines whether the cells depend on Mcl-1 for survival. We further investigated the role of Mcl-1 in NSCLC cells using a Mcl-1-dependent cell line, H23. The expression of a complementary DNA containing only the coding region of MCL1 rescued H23 cells from the toxicity of a 3′ untranslated region (UTR) targeting Mcl-1 siRNA but not a siRNA targeting the coding region of MCL1. Furthermore, we show that Mcl-1 sequesters the BH3-only protein Noxa and Bim and the apoptotic effector Bak. Not surprisingly, Noxa, Bim, or Bak knockdown partially rescued H23 cells from toxicity mediated by Mcl-1 siRNA to different degrees. Collectively, our results indicate that targeting Mcl-1 may improve therapy for a subset of NSCLC patients.

Collaboration


Dive into the Lloyd T. Lam's collaboration.

Top Co-Authors

Avatar

Louis M. Staudt

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tamar Uziel

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

R. Eric Davis

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Joel D. Leverson

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Warren M. Kati

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Zhao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge