Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Logan A. Walsh is active.

Publication


Featured researches published by Logan A. Walsh.


The New England Journal of Medicine | 2014

Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma

Alexandra Snyder; Vladimir Makarov; Taha Merghoub; Jianda Yuan; Jesse M. Zaretsky; Alexis Desrichard; Logan A. Walsh; Michael A. Postow; Phillip Wong; Teresa S. Ho; Travis J. Hollmann; Cameron Bruggeman; Kasthuri Kannan; Yanyun Li; Ceyhan Elipenahli; Cailian Liu; Christopher T. Harbison; Lisu Wang; Antoni Ribas; Jedd D. Wolchok; Timothy A. Chan

BACKGROUND Immune checkpoint inhibitors are effective cancer treatments, but molecular determinants of clinical benefit are unknown. Ipilimumab and tremelimumab are antibodies against cytotoxic T-lymphocyte antigen 4 (CTLA-4). Anti-CTLA-4 treatment prolongs overall survival in patients with melanoma. CTLA-4 blockade activates T cells and enables them to destroy tumor cells. METHODS We obtained tumor tissue from patients with melanoma who were treated with ipilimumab or tremelimumab. Whole-exome sequencing was performed on tumors and matched blood samples. Somatic mutations and candidate neoantigens generated from these mutations were characterized. Neoantigen peptides were tested for the ability to activate lymphocytes from ipilimumab-treated patients. RESULTS Malignant melanoma exomes from 64 patients treated with CTLA-4 blockade were characterized with the use of massively parallel sequencing. A discovery set consisted of 11 patients who derived a long-term clinical benefit and 14 patients who derived a minimal benefit or no benefit. Mutational load was associated with the degree of clinical benefit (P=0.01) but alone was not sufficient to predict benefit. Using genomewide somatic neoepitope analysis and patient-specific HLA typing, we identified candidate tumor neoantigens for each patient. We elucidated a neoantigen landscape that is specifically present in tumors with a strong response to CTLA-4 blockade. We validated this signature in a second set of 39 patients with melanoma who were treated with anti-CTLA-4 antibodies. Predicted neoantigens activated T cells from the patients treated with ipilimumab. CONCLUSIONS These findings define a genetic basis for benefit from CTLA-4 blockade in melanoma and provide a rationale for examining exomes of patients for whom anti-CTLA-4 agents are being considered. (Funded by the Frederick Adler Fund and others.).


Nature | 2012

IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype

Sevin Turcan; Daniel Rohle; Anuj Goenka; Logan A. Walsh; Fang Fang; Emrullah Yilmaz; Carl Campos; Armida W. M. Fabius; Chao Lu; Patrick S. Ward; Craig B. Thompson; Andrew Kaufman; Olga A. Guryanova; Ross L. Levine; Adriana Heguy; Agnes Viale; Luc G. T. Morris; Jason T. Huse; Ingo K. Mellinghoff; Timothy A. Chan

Both genome-wide genetic and epigenetic alterations are fundamentally important for the development of cancers, but the interdependence of these aberrations is poorly understood. Glioblastomas and other cancers with the CpG island methylator phenotype (CIMP) constitute a subset of tumours with extensive epigenomic aberrations and a distinct biology. Glioma CIMP (G-CIMP) is a powerful determinant of tumour pathogenicity, but the molecular basis of G-CIMP remains unresolved. Here we show that mutation of a single gene, isocitrate dehydrogenase 1 (IDH1), establishes G-CIMP by remodelling the methylome. This remodelling results in reorganization of the methylome and transcriptome. Examination of the epigenome of a large set of intermediate-grade gliomas demonstrates a distinct G-CIMP phenotype that is highly dependent on the presence of IDH mutation. Introduction of mutant IDH1 into primary human astrocytes alters specific histone marks, induces extensive DNA hypermethylation, and reshapes the methylome in a fashion that mirrors the changes observed in G-CIMP-positive lower-grade gliomas. Furthermore, the epigenomic alterations resulting from mutant IDH1 activate key gene expression programs, characterize G-CIMP-positive proneural glioblastomas but not other glioblastomas, and are predictive of improved survival. Our findings demonstrate that IDH mutation is the molecular basis of CIMP in gliomas, provide a framework for understanding oncogenesis in these gliomas, and highlight the interplay between genomic and epigenomic changes in human cancers.


Nature Genetics | 2013

The mutational landscape of adenoid cystic carcinoma

Allen S. Ho; Kasthuri Kannan; David M Roy; Luc G. T. Morris; Ian Ganly; Nora Katabi; Deepa Ramaswami; Logan A. Walsh; Stephanie Eng; Jason T. Huse; Jianan Zhang; Igor Dolgalev; Kety Huberman; Adriana Heguy; Agnes Viale; Marija Drobnjak; Margaret Leversha; Christine E Rice; Bhuvanesh Singh; N. Gopalakrishna Iyer; C. René Leemans; Elisabeth Bloemena; Robert L. Ferris; Raja R. Seethala; Benjamin E. Gross; Yupu Liang; Rileen Sinha; Luke Peng; Benjamin J. Raphael; Sevin Turcan

Adenoid cystic carcinomas (ACCs) are among the most enigmatic of human malignancies. These aggressive salivary gland cancers frequently recur and metastasize despite definitive treatment, with no known effective chemotherapy regimen. Here we determined the ACC mutational landscape and report the exome or whole-genome sequences of 60 ACC tumor-normal pairs. These analyses identified a low exonic somatic mutation rate (0.31 non-silent events per megabase) and wide mutational diversity. Notably, we found mutations in genes encoding chromatin-state regulators, such as SMARCA2, CREBBP and KDM6A, suggesting that there is aberrant epigenetic regulation in ACC oncogenesis. Mutations in genes central to the DNA damage response and protein kinase A signaling also implicate these processes. We observed MYB-NFIB translocations and somatic mutations in MYB-associated genes, solidifying the role of these aberrations as critical events in ACC. Lastly, we identified recurrent mutations in the FGF-IGF-PI3K pathway (30% of tumors) that might represent new avenues for therapy. Collectively, our observations establish a molecular foundation for understanding and exploring new treatments for ACC.


Cell Communication and Signaling | 2011

IGF-1 increases invasive potential of MCF 7 breast cancer cells and induces activation of latent TGF-β1 resulting in epithelial to mesenchymal transition

Logan A. Walsh; Sashko Damjanovski

IntroductionTGF-β signaling has been extensively studied in many developmental contexts, amongst which is its ability to induce epithelial to mesenchymal transitions (EMT). EMTs play crucial roles during embryonic development and have also come under intense scrutiny as a mechanism through which breast cancers progress to become metastatic. Interestingly, while the molecular hallmarks of EMT progression (loss of cell adhesion, nuclear localization of β-catenin) are straightforward, the cellular signaling cascades that result in an EMT are numerous and diverse. Furthermore, most studies describing the biological effects of TGF-β have been performed using high concentrations of active, soluble TGF-β, despite the fact that TGF-β is produced and secreted as a latent complex.MethodsMCF-7 breast cancer cells treated with recombinant IGF-1 were assayed for metalloproteinase activity and invasiveness through a matrigel coated transwell invasion chamber. IGF-1 treatments were then followed by the addition of latent-TGF-β1 to determine if elevated levels of IGF-1 together with latent-TGF-β1 could cause EMT.ResultsResults showed that IGF-1 - a molecule known to be elevated in breast cancer is a regulator of matrix metalloproteinase activity (MMP) and the invasive potential of MCF-7 breast cancer cells. The effects of IGF-1 appear to be mediated through signals transduced via the PI3K and MAPK pathways. In addition, increased IGF-1, together with latent TGF-β1 and active MMPs result in EMT.ConclusionsTaken together our data suggest a novel a link between IGF-1 levels, MMP activity, TGF-β signaling, and EMT in breast cancer cells.


Protein & Cell | 2014

Driver mutations of cancer epigenomes

David M. Roy; Logan A. Walsh; Timothy A. Chan

Epigenetic alterations are associated with all aspects of cancer, from tumor initiation to cancer progression and metastasis. It is now well understood that both losses and gains of DNA methylation as well as altered chromatin organization contribute significantly to cancer-associated phenotypes. More recently, new sequencing technologies have allowed the identification of driver mutations in epigenetic regulators, providing a mechanistic link between the cancer epigenome and genetic alterations. Oncogenic activating mutations are now known to occur in a number of epigenetic modifiers (i.e. IDH1/2, EZH2, DNMT3A), pinpointing epigenetic pathways that are involved in tumorigenesis. Similarly, investigations into the role of inactivating mutations in chromatin modifiers (i.e. KDM6A, CREBBP/EP300, SMARCB1) implicate many of these genes as tumor suppressors. Intriguingly, a number of neoplasms are defined by a plethora of mutations in epigenetic regulators, including renal, bladder, and adenoid cystic carcinomas. Particularly striking is the discovery of frequent histone H3.3 mutations in pediatric glioma, a particularly aggressive neoplasm that has long remained poorly understood. Cancer epigenetics is a relatively new, promising frontier with much potential for improving cancer outcomes. Already, therapies such as 5-azacytidine and decitabine have proven that targeting epigenetic alterations in cancer can lead to tangible benefits. Understanding how genetic alterations give rise to the cancer epigenome will offer new possibilities for developing better prognostic and therapeutic strategies.


Clinical Cancer Research | 2016

Comprehensive molecular characterization of salivary duct carcinoma reveals actionable targets and similarity to apocrine breast cancer

Martin G. Dalin; Alexis Desrichard; Nora Katabi; Vladimir Makarov; Logan A. Walsh; Ken Wing Lee; Qingguo Wang; Joshua Armenia; Lyndsay West; Snjezana Dogan; Lu Wang; Deepa Ramaswami; Alan L. Ho; Ian Ganly; David B. Solit; Michael F. Berger; Nikolaus Schultz; Jorge S. Reis-Filho; Timothy A. Chan; Luc G. T. Morris

Purpose: Salivary duct carcinoma (SDC) is an aggressive salivary malignancy, which is resistant to chemotherapy and has high mortality rates. We investigated the molecular landscape of SDC, focusing on genetic alterations and gene expression profiles. Experimental Design: We performed whole-exome sequencing, RNA sequencing, and immunohistochemical analyses in 16 SDC tumors and examined selected alterations via targeted sequencing of 410 genes in a second cohort of 15 SDCs. Results: SDCs harbored a higher mutational burden than many other salivary carcinomas (1.7 mutations/Mb). The most frequent genetic alterations were mutations in TP53 (55%), HRAS (23%), PIK3CA (23%), and amplification of ERBB2 (35%). Most (74%) tumors had alterations in either MAPK (BRAF/HRAS/NF1) genes or ERBB2. Potentially targetable alterations based on supportive clinical evidence were present in 61% of tumors. Androgen receptor (AR) was overexpressed in 75%; several potential resistance mechanisms to androgen deprivation therapy (ADT) were identified, including the AR-V7 splice variant (present in 50%, often at low ratios compared with full-length AR) and FOXA1 mutations (10%). Consensus clustering and pathway analyses in transcriptome data revealed striking similarities between SDC and molecular apocrine breast cancer. Conclusions: This study illuminates the landscape of genetic alterations and gene expression programs in SDC, identifying numerous molecular targets and potential determinants of response to AR antagonism. This has relevance for emerging clinical studies of ADT and other targeted therapies in SDC. The similarities between SDC and apocrine breast cancer indicate that clinical data in breast cancer may generate useful hypotheses for SDC. Clin Cancer Res; 22(18); 4623–33. ©2016 AACR.


PLOS ONE | 2012

Embryonic Morphogen Nodal Promotes Breast Cancer Growth and Progression

Daniela F. Quail; Guihua Zhang; Logan A. Walsh; Gabrielle M. Siegers; Dylan Z. Dieters-Castator; Scott D. Findlay; Heather C. Broughton; David M. Putman; David A. Hess; Lynne-Marie Postovit

Breast cancers expressing human embryonic stem cell (hESC)-associated genes are more likely to progress than well-differentiated cancers and are thus associated with poor patient prognosis. Elevated proliferation and evasion of growth control are similarly associated with disease progression, and are classical hallmarks of cancer. In the current study we demonstrate that the hESC-associated factor Nodal promotes breast cancer growth. Specifically, we show that Nodal is elevated in aggressive MDA-MB-231, MDA-MB-468 and Hs578t human breast cancer cell lines, compared to poorly aggressive MCF-7 and T47D breast cancer cell lines. Nodal knockdown in aggressive breast cancer cells via shRNA reduces tumour incidence and significantly blunts tumour growth at primary sites. In vitro, using Trypan Blue exclusion assays, Western blot analysis of phosphorylated histone H3 and cleaved caspase-9, and real time RT-PCR analysis of BAX and BCL2 gene expression, we demonstrate that Nodal promotes expansion of breast cancer cells, likely via a combinatorial mechanism involving increased proliferation and decreased apopotosis. In an experimental model of metastasis using beta-glucuronidase (GUSB)-deficient NOD/SCID/mucopolysaccharidosis type VII (MPSVII) mice, we show that although Nodal is not required for the formation of small (<100 cells) micrometastases at secondary sites, it supports an elevated proliferation:apoptosis ratio (Ki67:TUNEL) in micrometastatic lesions. Indeed, at longer time points (8 weeks), we determined that Nodal is necessary for the subsequent development of macrometastatic lesions. Our findings demonstrate that Nodal supports tumour growth at primary and secondary sites by increasing the ratio of proliferation:apoptosis in breast cancer cells. As Nodal expression is relatively limited to embryonic systems and cancer, this study establishes Nodal as a potential tumour-specific target for the treatment of breast cancer.


Cancer Research | 2012

Embryonic Protein Nodal Promotes Breast Cancer Vascularization

Daniela F. Quail; Logan A. Walsh; Guihua Zhang; Scott D. Findlay; Juan Moreno; Laura Fung; Amber Ablack; John D. Lewis; Susan J. Done; David A. Hess; Lynne-Marie Postovit

Tumor vascularization is requisite for breast cancer progression, and high microvascular density in tumors is a poor prognostic indicator. Patients bearing breast cancers expressing human embryonic stem cell (hESC)-associated genes similarly exhibit high mortality rates, and the expression of embryonic proteins is associated with tumor progression. Here, we show that Nodal, a hESC-associated protein, promotes breast cancer vascularization. We show that high levels of Nodal are positively correlated with high vascular densities in human breast lesions (P = 0.0078). In vitro, we show that Nodal facilitates breast cancer-induced endothelial cell migration and tube formation, largely by upregulating the expression and secretion of proangiogenic factors by breast cancer cells. Using a directed in vivo angiogenesis assay and a chick chorioallantoic membrane assay, we show that Nodal promotes vascular recruitment in vivo. In a clinically relevant in vivo model, whereby Nodal expression was inhibited following tumor formation, we found a significant reduction in tumor vascularization concomitant with elevated hypoxia and tumor necrosis. These findings establish Nodal as a potential target for the treatment of breast cancer angiogenesis and progression.


Molecular Biology of the Cell | 2011

Low oxygen levels induce the expression of the embryonic morphogen Nodal.

Daniela F. Quail; Meghan J. Taylor; Logan A. Walsh; Dylan Z. Dieters-Castator; Padmalaya Das; Michael Jewer; Guihua Zhang; Lynne-Marie Postovit

This study demonstrates that low oxygen (O2) levels induce the embryonic protein Nodal. This finding is significant, as low O2 levels characterize the microenvironments associated with both early development and tumor progression, and Nodal has been shown to promote tumorigenicity and to govern stem cell fate.


Nature Cell Biology | 2017

Obesity alters the lung myeloid cell landscape to enhance breast cancer metastasis through IL5 and GM-CSF

Daniela F. Quail; Oakley C. Olson; Priya Bhardwaj; Logan A. Walsh; Leila Akkari; Marsha L. Quick; I-Chun Chen; Nils K. Wendel; Nir Ben-Chetrit; Jeanne Walker; Peter R. Holt; Andrew J. Dannenberg; Johanna A. Joyce

Obesity is associated with chronic, low-grade inflammation, which can disrupt homeostasis within tissue microenvironments. Given the correlation between obesity and relative risk of death from cancer, we investigated whether obesity-associated inflammation promotes metastatic progression. We demonstrate that obesity causes lung neutrophilia in otherwise normal mice, which is further exacerbated by the presence of a primary tumour. The increase in lung neutrophils translates to increased breast cancer metastasis to this site, in a GM-CSF- and IL5-dependent manner. Importantly, weight loss is sufficient to reverse this effect, and reduce serum levels of GM-CSF and IL5 in both mouse models and humans. Our data indicate that special consideration of the obese patient population is critical for effective management of cancer progression.

Collaboration


Dive into the Logan A. Walsh's collaboration.

Top Co-Authors

Avatar

Timothy A. Chan

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sashko Damjanovski

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Alexis Desrichard

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Vladimir Makarov

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason T. Huse

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Kasthuri Kannan

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Luc G. T. Morris

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sevin Turcan

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Agnes Viale

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge