Logan R. Graves
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Logan R. Graves.
Journal of Biomedical Optics | 2013
Timothy Renkoski; Bhaskar Banerjee; Logan R. Graves; Nathaniel S. Rial; Sirandon Ah Reid; Vassiliki L. Tsikitis; Valentine N. Nfonsam; Piyush Tiwari; Hemanth Gavini; Urs Utzinger
Abstract. The accepted screening technique for colon cancer is white light endoscopy. While most abnormal growths (lesions) are detected by this method, a significant number are missed during colonoscopy, potentially resulting in advanced disease. Missed lesions are often flat and inconspicuous in color. A prototype ultraviolet spectral imager measuring autofluorescence (AF) and reflectance has been developed and applied in a study of 21 fresh human colon surgical specimens. Six excitation wavelengths from 280 to 440 nm and formulaic ratio imaging were utilized to increase lesion contrast and cause neoplasms to appear bright compared to normal tissue. It was found that in the subset of lesions which were most difficult to visualize in standard color photographs [low contrast lesions, (LCLs)] a ratio image (F340/F440) of AF images excited at 340 and 440 nm produced extraordinary images and was effective in about 70% of these difficult cases. Contrast may be due to increased levels of reduced nicotinamide adenine dinucleotide, increased hemoglobin absorption, and reduced signal from submucosal collagen. A second successful ratio image (R480/R555) combined two reflectance images to produce exceptional images especially in particular LCLs where F340/F440 was ineffective. The newly discovered ratio images can potentially improve detection rate in screening with a novel AF colonoscope.
Optics Letters | 2016
Lei Huang; Hee Joo Choi; Wenchuan Zhao; Logan R. Graves; Dae Wook Kim
We report an adaptive interferometric null testing method for overcoming the dynamic range limitations of conventional null testing approaches during unknown freeform optics metrology or optics manufacturing processes that require not-yet-completed surface measurements to guide the next fabrication process. In the presented adaptive method, a deformable mirror functions as an adaptable null component for an unknown optical surface. The optimal deformable mirrors shape is determined by the stochastic parallel gradient descent algorithm and controlled by a deflectometry system. An adaptive interferometric null testing setup was constructed, and its metrology data successfully demonstrated superb adaptive capability in measuring an unknown surface.
Proceedings of SPIE | 2016
Dae Wook Kim; James H. Burge; Jonathan M. Davis; Hubert M. Martin; M. T. Tuell; Logan R. Graves; Steve C. West
The Giant Magellan Telescope (GMT) primary mirror consists of seven 8.4 m light-weight honeycomb mirrors that are being manufactured at the Richard F. Caris Mirror Lab (RFCML), University of Arizona. In order to manufacture the largest and most aspheric astronomical mirrors various high precision fabrication technologies have been developed, researched and implemented at the RFCML. The unique 8.4 m (in mirror diameter) capacity fabrication facilities are fully equipped with large optical generator (LOG), large polishing machine (LPM), stressed lap, rigid conformal lap (RC lap) and their process simulation/optimization intelligence called MATRIX. While the core capability and key manufacturing technologies have been well demonstrated by completing the first GMT off-axis segment, there have been significant hardware and software level improvements in order to improve and enhance the GMT primary mirror manufacturing efficiency. The new and improved manufacturing technology plays a key role to realize GMT, the next generation extremely large telescope enabling new science and discoveries, with high fabrication efficiency and confidence.
Lasers in Surgery and Medicine | 2013
Bhaskar Banerjee; Nathaniel S. Rial; Timothy Renkoski; Logan R. Graves; Sirandon Ah Reid; Chengcheng Hu; Vassiliki L. Tsikitis; Valentine Nfonsom; Judith Pugh; Urs Utzinger
Colonoscopy is the preferred method for colon cancer screening, but can miss polyps and flat neoplasms with low color contrast. The objective was to develop a new autofluorescence method that improves image contrast of colonic neoplasms.
IEEE Sensors Journal | 2012
Bhaskar Banerjee; Logan R. Graves; Urs Utzinger
Cancer is a cellular process. The emission spectrum of tryptophan, which produces the strongest fluorescence in cells, was investigated in cells and tissues of a normal and malignant esophagus. Estimated fluorescence intensity per cell was about three times greater in cancerous cells than in normal cells. The fluorescence was also greater in cancerous tissue but the difference was attenuated, probably because of absorption and scattering. Cellular fluorescence from tryptophan may be useful for the detection of cancer in esophageal cells and tissues.
Optical Manufacturing and Testing XII | 2018
Logan R. Graves; Hee Joo Choi; Wenchuan Zhao; Chang Jin Oh; Peng Su; Dae Wook Kim; Tianquan Su
Deflectometry is a metrology method able to measure large surface slope ranges that can achieve surface reconstruction accuracy similar to interferometry, making it ideal for freeform metrology. While it is a non-null method, deflectometry previously required a precise model of the unit under test to accurately reconstruct the surface. However, there are times when no such model exists, such as during the grinding phase of an optic. We developed a model-free iterative data processing technique which provides improved deflectometry surface reconstruction of optics when the correct surface model is unknown. The new method iteratively reconstructs the optical surface, leading to a reduction in error in the final reconstructed surface. Software simulations measuring the theoretical performance limitations of the model-free processing technique as well as a real-world test characterizing actual performance were performed. The method was implemented in a deflectometry system and a highly freeform surface was measured and reconstructed using both the iterative technique and a traditional non-iterative technique. The results were compared to a commercial interferometric measurement of the optic. The reconstructed surface departure from interferometric results was reduced from 44.39 μm RMS with traditional non-iterative deflectometry down to 5.20 μm RMS with the model-free technique reported.
Optical Manufacturing and Testing XII | 2018
Maham Aftab; James H. Burge; Greg Smith; Logan R. Graves; Chang Jin Oh; Dae Wook Kim
A new data processing method based on orthonormal rectangular gradient polynomials is introduced in this work. This methodology is capable of effectively reconstructing surfaces or wavefronts with data obtained from deflectometry systems, especially during fabrication and metrology of high resolution and freeform surfaces. First, we derived a complete and computationally efficient vector polynomial set, called G polynomials. These polynomials are obtained from gradients of Chebyshev polynomials of the first kind – a basis set with many qualities that are useful for modal fitting. In our approach both the scalar and vector polynomials, that are defined and manipulated easily, have a straightforward relationship due to which the polynomial coefficients of both sets are the same. This makes conversion between the two sets highly convenient. Another powerful attribute of this technique is the ability to quickly generate a very large number of polynomial terms, with high numerical efficiency. Since tens of thousands of polynomials can be generated, mid-to-high spatial frequencies of surfaces can be reconstructed from high-resolution metrology data. We will establish the strengths of our approach with examples involving simulations as well as real metrology data from the Daniel K. Inouye Solar Telescope (DKIST) primary mirror.
Fourth European Seminar on Precision Optics Manufacturing | 2017
Maham Aftab; Isaac Trumper; Lei Huang; Hee Joo Choi; Wenchuan Zhao; Logan R. Graves; Chang Jin Oh; Dae Wook Kim
Dynamic metrology holds the key to overcoming several challenging limitations of conventional optical metrology, especially with regards to precision freeform optical elements. We present two dynamic metrology systems: 1) adaptive interferometric null testing; and 2) instantaneous phase shifting deflectometry, along with an overview of a gradient data processing and surface reconstruction technique. The adaptive null testing method, utilizing a deformable mirror, adopts a stochastic parallel gradient descent search algorithm in order to dynamically create a null testing condition for unknown freeform optics. The single-shot deflectometry system implemented on an iPhone uses a multiplexed display pattern to enable dynamic measurements of time-varying optical components or optics in vibration. Experimental data, measurement accuracy / precision, and data processing algorithms are discussed.
8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test, Measurement Technology, and Equipment | 2016
Wenchuan Zhao; Logan R. Graves; Run Huang; Weihong Song; D. W. Kim
Freeform optics provide excellent performance for a wide variety of applications. However, obtaining an accurate freeform surface measurement is highly challenging due to its large aspheric/freeform departure. It has been proven that SCOTS (Software Configurable Optical Test System), an advanced deflectometry system developed at the University of Arizona, can measure the departure of a freeform surface from the desired shape with nanometer accuracy. Here, a new data processing technique was used to measure a freeform surface without any prior knowledge of the shape of the surface. Knowing only the geometry of one point on the test surface, this method can take a blind measurement of a freeform surface and arrive at the true surface through iterative construction.
Proceedings of SPIE | 2015
Ji Nyeong Choi; Dongok Ryu; Sug Whan Kim; Logan R. Graves; Peng Su; Run Huang; Dae Wook Kim
The Software Configurable Optical Testing System (SCOTS) is one of the newest testing methods for large mirror surfaces. The Integrated Ray Tracing (IRT) technique can be applicable to the SCOTS simulation by performing non-sequential ray tracing from the screen to the camera detector in the real scale. Therefore, the radiometry of distorted pattern images are numerically estimated by the IRT simulation module. In this study, we construct an IRT SCOTS simulation model for the Fast Steering Mirror Prototype (FSMP) surface of the Giant Magellan Telescope (GMT). GMT FSMP is an off-axis ellipsoidal concave mirror that is 1064 mm in diameter and has PV 3.1 mm in aspheric departure. The surface error requirement is less than 20 nm rms. The screen is modeled as an array of 1366 by 768 screen pixels of 0.227 mm in pitch size. The screen is considered as a Lambertian scattering surface. The screen and the camera are positioned around 4390 mm away from the mirror and separated by around 132 mm from each other. The light source are scanning lines and sinusoidal patterns generated by 616,050 rays per one screen pixel. Of the initially generated rays, 0.22 % are received by the camera’s detector and contribute to form distorted pattern images. These images are converted to the slope and height maps of the mirror surface. The final result for the height difference between input surface and reconstructed surface was 14.14 nm rms. Additionally, the simulated mirror pattern image was compared with the real SCOTS test for the GMT FSMP. This study shows applicability of using the IRT model to SCOTS simulation with nanometer level numerical accuracy.