Lokanathan Srikanth
Sri Venkateswara Institute of Medical Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lokanathan Srikanth.
Neurology India | 2013
Katari Venkatesh; Lokanathan Srikanth; B Vengamma; Chodimella Chandrasekhar; Akula Sanjeevkumar; Bodapati Chandra Mouleshwara Prasad; Potukuchi Venkata Gurunadha Krishna Sarma
BACKGROUND Astrocytes are abundantly present as glial cells in the brain and play an important role in the regenerative processes. The possible role of stem cell derived astrocytes in the spinal cord injuries is possible related to their influence at the synaptic junctions. AIM The present study is focused on in vitro differentiation of cultured human CD34+ cells into astrocytes. MATERIALS AND METHODS Granulocyte-colony stimulating factor mobilized human CD34+ cells were isolated from peripheral blood using apheresis method from a donor. These cells were further purified by fluorescence-activated cell sorting and cultured in Dulbeccos modified eagles medium. Thus, cultured cells were induced with astrocyte defined medium (ADM) and in the differentiated astrocytes serine/threonine protein kinases (STPK) and glutamine synthetase (GLUL) activities were estimated. The expression of glial fibrillary acidic protein (GFAP) and GLUL were confirmed by reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS The cultured human CD34+ cells differentiated into astrocytes after 11 h of incubation in ADM. The RT-PCR experiment showed the expression of GLUL (1.5 kb) and GFAP (2.9 kb) in differentiated astrocytes. The high enzyme activities of GLUL and STPK in differentiated astrocytes compared with cultured human CD34+ cells confirmed astrocyte formation. CONCLUSION In the present study, in vitro differentiation of stem cells with retinoic acid induction may result in the formation of astrocytes.
Journal of Biomolecular Structure & Dynamics | 2015
Pasupuleti Santhosh Kumar; Katari Venkatesh; Gopal Sowjenya; Lokanathan Srikanth; Manne Mudhu Sunitha; Uppu Venkateswara Prasad; Vimjam Swarupa; Sthanikam Yeswanth; P. Sri Ram Naveen; A. V. S. S. N. Sridhar; V. Siva Kumar; Potukuchi Venkata Gurunadha Krishna Sarma
Distal renal tubular acidosis (dRTA) is an autosomal recessive syndrome results defect in either proximal tubule bicarbonate reabsorption or in distal tubule H+ secretion and is characterized by severe hyperchloraemic metabolic acidosis in childhood. dRTA is associated with functional variations in the ATP6V1B1 gene encoding β1 subunit of H+-ATPase, key membrane transporters for net acid excretion of α-intercalated cells of medullary collecting ducts. In the present study, a 13-year-old male patient suffering with nephropathy and sensorineural deafness was reported in the Department of Nephrology. We predicted improper functioning of ATP6V1B1 gene could be the reason for diseased condition. Therefore, exons 3, 4, and 7 contributing active site of ATP6V1B1 gene was amplified and sequenced (Accession numbers: KF571726, KM222653). The obtained sequences were BLAST searched against the wild type ATP6V1B1 gene which showed novel mutations c.307 A > G, c.308 C > A, c.310 C > G, c.704 T > C, c.705 G > T, c.709 A > G, c.710 A > G, c.714 G > A, c.716 C > A, c.717delC, c.722 C > G, c.728insG, c.741insT, c.753G > C. These mutations resulted in the expression of truncated protein terminating at Lys 209. The mutated ATP6V1B1structure superimposed with wild type showed extensive variations with RMSD 1.336 Å and could not bind to substrate ADP leading to non-functional ATPase. These results conclusively explain these mutations in ATP6V1B1 gene resulted in structural changes causing accumulation of H+ ions contributing to dRTA with sensorineural deafness.
Journal of Pharmacy and Bioallied Sciences | 2014
Pasupuleti Santhosh Kumar; Yellapu Nanda Kumar; Uppu Venkateswara Prasad; Sthanikam Yeswanth; Vimjam Swarupa; Gopal Sowjenya; Katari Venkatesh; Lokanathan Srikanth; Valasani Koteswara Rao; Potukuchi Venkata Gurunatha Krishna Sarma
Background: The emergence of multidrug-resistant strains of Staphylococcus aureus, there is an urgent need for the development of new antimicrobials which are narrow and pathogen specific. Aim: In this context, the present study is aimed to have a control on the staphylococcal infections by targeting the unique and essential enzyme; porphobilinogen synthase (PBGS) catalyzes the condensation of two molecules of δ-aminolevulinic acid, an essential step in the tetrapyrrole biosynthesis. Hence developing therapeutics targeting PBGS will be the promising choice to control and manage the staphylococcal infections. 4,5-dioxovalerate (DV) is known to inhibit PBGS. Materials and Methods: In view of this, in this study, novel dioxovalerate derivatives (DVDs) molecules were designed so as to inhibit PBGS, a potential target of S. aureus and their inhibitory activity was predicted using molecular docking studies by molecular operating environment. The 3D model of PBGS was constructed using Chlorobium vibrioform (Protein Data Bank 1W1Z) as a template by homology modeling method. Results: The built structure was close to the crystal structure with Z score − 8.97. Molecular docking of DVDs into the S. aureus PBGS active site revealed that they are showing strong interaction forming H-bonds with the active sites of K248 and R217. The ligand–receptor complex of DVD13 showed a best docking score of − 14.4555 kcal/mol among DV and all its analogs while the substrate showed docking score of − 13.0392 kcal/mol showing interactions with S199, K217 indicating that DVD13 can influence structural variations on the enzyme and thereby inhibiting the enzyme. Conclusion: The substrate analog DVD13 is showing significant interactions with active site of PBGS and it may be used as a potent inhibitor to control S. aureus infections.
Cell Biology International | 2016
Manne Mudhu Sunitha; Lokanathan Srikanth; Pasupuleti Santhosh Kumar; Chodimella Chandrasekhar; Potukuchi Venkata Gurunadha Krishna Sarma
Haematopoietic stem cells (HSCs) possess multipotent ability to differentiate into various types of cells on providing appropriate niche. In the present study, the differentiating potential of human HSCs into β‐cells of islets of langerhans was explored. Human HSCs were apheretically isolated from a donor and cultured. Phenotypic characterization of CD34 glycoprotein in the growing monolayer HSCs was confirmed by immunocytochemistry and flow cytometry techniques. HSCs were induced by selection with beta cell differentiating medium (BDM), which consists of epidermal growth factor (EGF), fibroblast growth factor (FGF), transferrin, Triiodo‐l‐Tyronine, nicotinamide and activin A. Distinct morphological changes of differentiated cells were observed on staining with dithizone (DTZ) and expression of PDX1, insulin and synaptophysin was confirmed by immunocytochemistry. Quantitative real‐time polymerase chain reaction (qRT‐PCR) analysis revealed distinct expression of specific β‐cell markers, pancreatic and duodenal homeobox‐1 (PDX1), glucose transporter‐2 (GLUT‐2), synaptophysin (SYP) and insulin (INS) in these differentiated cells compared to HSCs. Further, these cells exhibited elevated expression of INS gene at 10 mM glucose upon inducing with different glucose concentrations. The prominent feature of the obtained β‐cells was the presence of glucose sensors, which was determined by glucokinase activity and high glucokinase activity compared with CD34+ stem cells. These findings illustrate the differentiation of CD34+ HSCs into β‐cells of islets of langerhans.
Indian Journal of Pharmaceutical Sciences | 2014
Pasupuleti Santhosh Kumar; Yellapu Nanda Kumar; Uppu Venkateswara Prasad; Sthanikam Yeswanth; Vimjam Swarupa; D. Vasu; Katari Venkatesh; Lokanathan Srikanth; Valasani Koteswara Rao; Potukuchi Venkata Gurunadha Krishna Sarma
Glucokinase is classified in bacteria based upon having ATP binding site and ‘repressor/open reading frames of unknown function/sugar kinases’ motif, the sequence of glucokinase gene (JN645812) of Staphylococcus aureus ATCC12600 showed presence of ATP binding site and ‘repressor/open reading frames of unknown function/sugar kinases’ motif. We have earlier observed glucokinase of S. aureus has higher affinity towards the substrate compared to other bacterial glucokinase and under anaerobic condition with increased glucose concentration S. aureus exhibited higher rate of biofilm formation. To establish this, 3D structure of glucokinase was built using homology modeling method, the PROCHECK and ProSA-Web analysis indicated this built glucokinase structure was close to the crystal structure. This structure was superimposed with different bacterial glucokinase structures and from the root-mean-square deviation values, it is concluded that S. aureus glucokinase exhibited very close homology with Enterococcus faecalis and Clostridium difficle while with other bacteria it showed high degree of variations both in domain and nondomain regions. Glucose docking results indicated -12.3697 kcal/mol for S. aureus glucokinase compared with other bacterial glucokinase suggesting higher affinity of glucose which correlates with enzyme kinetics and higher rate of biofilm formation.
Indian Journal of Human Genetics | 2013
Pasupuleti Santhosh Kumar; Katari Venkatesh; Lokanathan Srikanth; Potukuchi Venkata Gurunadha Krishna Sarma; Akkamgari Ramprasad Reddy; Srinivasan Subramanian; Bobbidi Venkata Phaneendra
Von Hippel-Lindau (VHL) disease is an autosomal dominant hereditary cancer syndrome that predisposes to the development of a variety of benign and malignant tumors, especially cerebellar hemangioblastomas, retinal angiomas and clear-cell renal cell carcinomas (RCC). We have identified of VHL gene using immunohistochemistry in a patient who was diagnosed for RCC. In order to understand the involvement of mutation in the VHL gene exon 1 was amplified and sequenced (accession number: JX 401534). The sequence analysis revealed the presence of novel missense mutations c.194 C>T, c.239 G>A, c.278 G>A, c.319 C>G, c. 337 C > G leading to the following variations p.Ala 65 Val, p.Gly 80 Asp, p.Gly 93 Glu, p.Gln 107 Glu, p.Gln 113 Glu in the protein.
Bioinformation | 2013
Potukuchi Venkata Gurunadha Krishna Sarma; Lokanathan Srikanth; Katari Venkatesh; P Suryanarayana Murthy; Puranam Usha Sarma
It has been observed that mycobacterial species has high content of cardiolipin (CL) in their cell membranes more so pathogenic mycobacteria and in bacteria CL activates polymerases, gyrases by removing the bound ADP. Therefore, in the present study cardiolipin synthase (cls) which catalyses the formation of CL was isolated purified and characterized from the cell membrane of Mycobacterium phlei. The purified cls obtained from C-18 RP-HPLC column had a molecular weight of 58 kDa with an isoelectric point of 4.5. The enzyme activity (11.5+0.15 µM of CL phosphorous. ml-1 minute-1 for PG as substrate and 14+0.35µM of CL phosphorous. ml-1 minute-1 for CDP-DG as substrate) was optimal at pH 4.8 and showed KM values of 55+0.05µM and 2.56+0.04µM for phosphatidyl glycerol and CDP-diacylglycerol, respectively, with an absolute requirement of Mg2+ and Mn2+ ions for its activity however, Ca2+ ions inhibited the activity of the cls. The partial amino acid sequence of cls showed significant homology with pgsA3 gene of M. tuberculosis and in this organism the CL biosynthesis is very high having three genes coding for PLs biosynthesis therefore, enzymes involved in CL biosynthesis may be an attractive drug target in the development of new antimycobacterial drugs.
Biochemical and Biophysical Research Communications | 2018
Pasupuleti Santhosh Kumar; Chodimella Chandrasekhar; Lokanathan Srikanth; Potukuchi Venkata Gurunadha Krishna Sarma
Megakaryocytopoiesis results in the formation of platelets, which are essential for hemostasis. Decreased production or increased destruction of platelets can cause thrombocytopenia, in which platelet transfusion is the mode of treatment. The present study is aimed in generation of megakaryocytes (MKs) and platelet from human hematopoietic stem cells (HSCs). The purity of HSCs was assessed through Flow cytometry and immunocytochemistry (ICC) studies. These pure HSCs were induced with thrombopoietin (TPO), similarly with Andrographis paniculata extract (APE) for 21 days to generate MKs. The APE is mainly composed of andrographolide which stimulates TPO from the liver, and this binds to CD110 present on the surface of HSCs and triggers the proliferation of HSCs and initiate higher MKs population subsequently, a large number of platelets. The results of the present study showed increased proliferation of HSCs grown in the presence of APE and revealed a high population of CD41a and CD42b positive MKs as enumerated by Flow cytometry compared with TPO induced MKs. These results also concurred with qRT-PCR and western blot analysis. The scanning electron microscopy (SEM) revealed the morphology of differentiated MKs and platelets were similar to human blood platelets. The differentiated MKs in APE exhibited polyploidy up to 32 N while TPO induced MKs showed polyploidy of 8 N, these results corroborated with colony forming unit assay. On thrombin stimulation, high expression of P-selectin (CD62p) and fibrinogen binding were detected in APE induced platelets. Autologous transplantation of platelets generated from APE may be a useful option in thrombocytopenia condition.
Iranian biomedical journal | 2017
D. Vasu; Pasupuleti Santhosh Kumar; Uppu Venkateswara Prasad; Vimjam Swarupa; Sthanikam Yeswanth; Lokanathan Srikanth; Manne Mudhu Sunitha; Abhijith Choudhary; Potukuchi Venkata Gurunadha Krishna Sarma
Background: When Staphylococcus aureus is grown in the presence of high concentration of external glucose, this sugar is phosphorylated by glucokinase (glkA) to form glucose-6-phosphate. This product subsequently enters into anabolic phase, which favors biofilm formation. The presence of ROK (repressor protein, open reading frame, sugar kinase) motif, phosphate-1 and -2 sites, and tyrosine kinase sites in glkA of S. aureus indicates that phosphorylation must regulate the glkA activity. The aim of the present study was to identify the effect of phosphorylation on the function of S. aureus glkA and biofilm formation. Methods: Pure glkA and protein-tyrosine kinase (BYK) of S. aureus ATCC 12600 were obtained by fractionating the cytosolic fractions of glkA1 and BYK-1 expressing recombinant clones through nickel metal chelate column. The pure glkA was used as a substrate for BYK, and the phosphorylation of glkA was confirmed by treating with reagent A and resolving in SDS-PAGE, as well as staining with reagent A. The kinetic parameters of glkA and phosphorylated glkA were determined spectrophotometrically, and in silico tools were used for validation. S. aureus was grown in brain heart infusion broth, which was supplemented with glucose, and then biofilm units were calculated. Results: Fourfold elevated glkA activity was observed upon the phosphorylation by BYK. Protein-protein docking analysis revealed that glkA structure docked close to the adenosine triphosphate-binding site of BYK structure corroborating the kinetic results. Further, S. aureus grown in the presence of elevated glucose concentration exhibited an increase in the rate of biofilm formation. Conclusion: The elevated function of glkA is an essential requirement for increased biofilm units in S. aureus, a key pathogenic factor that helps its survival and the progress of infection.
Neuroscience Letters | 2015
Katari Venkatesh; Lokanathan Srikanth; B Vengamma; Chodimella Chandrasekhar; Bodapati Chandra Mouleshwara Prasad; Potukuchi Venkata Gurunadha Krishna Sarma
Collaboration
Dive into the Lokanathan Srikanth's collaboration.
Potukuchi Venkata Gurunadha Krishna Sarma
Sri Venkateswara Institute of Medical Sciences
View shared research outputs