Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vimjam Swarupa is active.

Publication


Featured researches published by Vimjam Swarupa.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2015

Phosphorylation controls the functioning of Staphylococcus aureus isocitrate dehydrogenase – favours biofilm formation

U. Venkateswara Prasad; D. Vasu; Sthanikam Yeswanth; Vimjam Swarupa; Manne Mudhu Sunitha; A. Choudhary; P. V. G. K. Sarma

Abstract Isocitrate dehydrogenase (IDH) gene from Staphylococcus aureus ATCC12600 was cloned, sequenced and characterized (HM067707). PknB site was observed in the active site of IDH; thus, it was predicted as IDH may be regulated by phosphorylation. Therefore, in this study, PknB, alkaline phosphatase III (SAOV 2675) and IDH genes (JN695616, JN645811 and HM067707) of S. aureus ATCC12600 were over expressed from clones PV 1, UVPALP-3 and UVIDH 1. On passing the cytosloic fractions through nickel metal chelate column, pure enzymes were obtained. Phosphorylation of pure IDH by PknB resulted in the complete loss of activity and was restored upon dephosphorylation with SAOV 2675 which indicated that phosphorylation and dephosphorylation regulate IDH activity in S. aureus. Further, when S. aureus ATCC12600 was grown in BHI broth, decreased IDH activity and increased biofilm units were observed; therefore, this regulation of IDH alters redox status in this pathogen favouring biofilm formation.


Journal of Biomolecular Structure & Dynamics | 2015

Mutations in exons 3 and 7 resulting in truncated expression of human ATP6V1B1 gene showing structural variations contributing to poor substrate binding-causative reason for distal renal tubular acidosis with sensorineural deafness

Pasupuleti Santhosh Kumar; Katari Venkatesh; Gopal Sowjenya; Lokanathan Srikanth; Manne Mudhu Sunitha; Uppu Venkateswara Prasad; Vimjam Swarupa; Sthanikam Yeswanth; P. Sri Ram Naveen; A. V. S. S. N. Sridhar; V. Siva Kumar; Potukuchi Venkata Gurunadha Krishna Sarma

Distal renal tubular acidosis (dRTA) is an autosomal recessive syndrome results defect in either proximal tubule bicarbonate reabsorption or in distal tubule H+ secretion and is characterized by severe hyperchloraemic metabolic acidosis in childhood. dRTA is associated with functional variations in the ATP6V1B1 gene encoding β1 subunit of H+-ATPase, key membrane transporters for net acid excretion of α-intercalated cells of medullary collecting ducts. In the present study, a 13-year-old male patient suffering with nephropathy and sensorineural deafness was reported in the Department of Nephrology. We predicted improper functioning of ATP6V1B1 gene could be the reason for diseased condition. Therefore, exons 3, 4, and 7 contributing active site of ATP6V1B1 gene was amplified and sequenced (Accession numbers: KF571726, KM222653). The obtained sequences were BLAST searched against the wild type ATP6V1B1 gene which showed novel mutations c.307 A > G, c.308 C > A, c.310 C > G, c.704 T > C, c.705 G > T, c.709 A > G, c.710 A > G, c.714 G > A, c.716 C > A, c.717delC, c.722 C > G, c.728insG, c.741insT, c.753G > C. These mutations resulted in the expression of truncated protein terminating at Lys 209. The mutated ATP6V1B1structure superimposed with wild type showed extensive variations with RMSD 1.336 Å and could not bind to substrate ADP leading to non-functional ATPase. These results conclusively explain these mutations in ATP6V1B1 gene resulted in structural changes causing accumulation of H+ ions contributing to dRTA with sensorineural deafness.


Bioinformation | 2013

Cloning, expression and characterization of glucokinase gene involved in the glucose-6- phosphate formation in Staphylococcus aureus

Hanumanthu Prasanna Lakshmi; Sthanikam Yeswanth; Uppu Venkateswara Prasad; D. Vasu; Vimjam Swarupa; Pasupuleti Santhosh Kumar; Mangamoori Lakshmi Narasu; Potukuchi Venkata Gurunadha Krishna Sarma

Glucose-6-phosphate (G-6-P) formation in Staphylococcus aureus is catalysed by glucokinase (glkA) gene under high glucose concentration leading to upregulation of various pathogenic factors; therefore the present study is aimed in the cloning and characterization of glk A gene from S. aureus ATCC12600. The glk A gene was cloned in the Sma I site of pQE 30, sequenced (Accession number: JN645812) and expressed in E. coli DH5α. The recombinant glk A expressed from the resultant glk A 1 clone was purified using nickel metal chelate chromatography, the pure enzyme gave single band in SDS-PAGE with molecular weight of 33kDa. The rglk A showed very high affinity to glucose Km 5.1±0.06mM with Hill coefficient of 1.66±0.032mM. Analysis of glucokinase sequence of S. aureus showed presence of typical ATP binding site and ROK motif CNCGRSGCIE. Sequentially and phylogenetically S. aureus glk A exhibited low identity with other bacterial glk A and 21% homology with human glucokinase (GCK). Functionally, S. aureus glk A showed higher rate of G-6-P formation compared to human GCK which may have profound role in the pathogenesis.


Journal of Pharmacy and Bioallied Sciences | 2014

In silico designing and molecular docking of a potent analog against Staphylococcus aureus porphobilinogen synthase

Pasupuleti Santhosh Kumar; Yellapu Nanda Kumar; Uppu Venkateswara Prasad; Sthanikam Yeswanth; Vimjam Swarupa; Gopal Sowjenya; Katari Venkatesh; Lokanathan Srikanth; Valasani Koteswara Rao; Potukuchi Venkata Gurunatha Krishna Sarma

Background: The emergence of multidrug-resistant strains of Staphylococcus aureus, there is an urgent need for the development of new antimicrobials which are narrow and pathogen specific. Aim: In this context, the present study is aimed to have a control on the staphylococcal infections by targeting the unique and essential enzyme; porphobilinogen synthase (PBGS) catalyzes the condensation of two molecules of δ-aminolevulinic acid, an essential step in the tetrapyrrole biosynthesis. Hence developing therapeutics targeting PBGS will be the promising choice to control and manage the staphylococcal infections. 4,5-dioxovalerate (DV) is known to inhibit PBGS. Materials and Methods: In view of this, in this study, novel dioxovalerate derivatives (DVDs) molecules were designed so as to inhibit PBGS, a potential target of S. aureus and their inhibitory activity was predicted using molecular docking studies by molecular operating environment. The 3D model of PBGS was constructed using Chlorobium vibrioform (Protein Data Bank 1W1Z) as a template by homology modeling method. Results: The built structure was close to the crystal structure with Z score − 8.97. Molecular docking of DVDs into the S. aureus PBGS active site revealed that they are showing strong interaction forming H-bonds with the active sites of K248 and R217. The ligand–receptor complex of DVD13 showed a best docking score of − 14.4555 kcal/mol among DV and all its analogs while the substrate showed docking score of − 13.0392 kcal/mol showing interactions with S199, K217 indicating that DVD13 can influence structural variations on the enzyme and thereby inhibiting the enzyme. Conclusion: The substrate analog DVD13 is showing significant interactions with active site of PBGS and it may be used as a potent inhibitor to control S. aureus infections.


Indian Journal of Pharmaceutical Sciences | 2014

Comparative structural and functional analysis of staphylococcus aureus glucokinase with other bacterial glucokinases

Pasupuleti Santhosh Kumar; Yellapu Nanda Kumar; Uppu Venkateswara Prasad; Sthanikam Yeswanth; Vimjam Swarupa; D. Vasu; Katari Venkatesh; Lokanathan Srikanth; Valasani Koteswara Rao; Potukuchi Venkata Gurunadha Krishna Sarma

Glucokinase is classified in bacteria based upon having ATP binding site and ‘repressor/open reading frames of unknown function/sugar kinases’ motif, the sequence of glucokinase gene (JN645812) of Staphylococcus aureus ATCC12600 showed presence of ATP binding site and ‘repressor/open reading frames of unknown function/sugar kinases’ motif. We have earlier observed glucokinase of S. aureus has higher affinity towards the substrate compared to other bacterial glucokinase and under anaerobic condition with increased glucose concentration S. aureus exhibited higher rate of biofilm formation. To establish this, 3D structure of glucokinase was built using homology modeling method, the PROCHECK and ProSA-Web analysis indicated this built glucokinase structure was close to the crystal structure. This structure was superimposed with different bacterial glucokinase structures and from the root-mean-square deviation values, it is concluded that S. aureus glucokinase exhibited very close homology with Enterococcus faecalis and Clostridium difficle while with other bacteria it showed high degree of variations both in domain and nondomain regions. Glucose docking results indicated -12.3697 kcal/mol for S. aureus glucokinase compared with other bacterial glucokinase suggesting higher affinity of glucose which correlates with enzyme kinetics and higher rate of biofilm formation.


Bioinformation | 2014

Structural and Functional analysis of Staphylococcus aureus NADP-dependent IDH and its comparison with Bacterial and Human NADPdependent IDH.

Uppu Venkateswara Prasad; Vimjam Swarupa; Sthanikam Yeswanth; Pasupuleti Santhosh Kumar; Easambadi Siva Kumar; Kalikiri Mahesh Kumar Reddy; Yellapu Nanda Kumar; Vangavaragu Jhansi Rani; Abhijit Chaudhary; Potukuchi Venkata Gurunadha Krishna Sarma

Staphylococcus aureus a natural inhabitant of nasopharyngeal tract mainly survives as biofilms and possess complete Krebs cycle which plays major role in its pathogenesis. This TCA cycle is regulated by Isocitrate dehydrogenase (IDH) we have earlier cloned, sequenced (HM067707), expressed and characterized this enzyme from S. aureus ATCC12600. We have observed only one type of IDH in all the strains of S. aureus which dictates the flow of carbon thereby controlling the virulence and biofilm formation, this phenomenon is variable among bacteria. Therefore in the present study comparative structural and functional analysis of IDH was undertaken. As the crystal structure of S. aureus IDH was not available therefore using the deduced amino sequence of complete gene the 3D structure of IDH was built in Modeller 9v8. The PROCHECK and ProSAweb analysis showed the built structure was close to the crystal structure of Bacillus subtilis. This structure when superimposed with other bacterial IDH structures exhibited extensive structural variations as evidenced from the RMSD values correlating with extensive sequential variations. Only 24% sequence identity was observed with both human NADP dependent IDHs (PDB: 1T09 and 1T0L) and the structural comparative studies indicated extensive structural variations with an RMSD values of 14.284Å and 10.073Å respectively. Docking of isocitrate to both human IDHs and S. aureus IDH structures showed docking scores of -11.6169 and -10.973 respectively clearly indicating higher binding affinity of isocitrate to human IDH.


Bioinformation | 2013

Molecular characterization of α-amylase from Staphylococcus aureus.

Hanumanthu Prasanna Lakshmi; Uppu Venkateswara Prasad; Sthanikam Yeswanth; Vimjam Swarupa; Osuru Hari Prasad; Mangamoori Lakshmi Narasu; Potukuchi Venkata Gurunadha Krishna Sarma

Staphylococcus aureus is one of the prominent Gram positive human pathogen secretes many surface and secretary proteins including various enzymes and pathogenic factors that favour the successful colonization and infection of host tissue. α-amylase is one of the enzymes secreted by S. aureus which catalyses the breakdown of complex sugars to monosaccharides, which are required for colonization and survival of this pathogen in any anatomical locales. In the present study we have cloned, sequenced, expressed and characterized α-amylase gene from S. aureus ATCC12600. The recombinant enzyme has a molecular weight of 58kDa and the kinetics showed Vmax 0.0208±0.033 (mg/ml)/mg/min and Km 10.633±0.737mg/ml. The multiple sequence analysis showed α- amylase of S. aureus exhibited large differences with Bacillus subtilis and Streptococcus bovis. As the crystal structure of S. aureus α- amylase was unavailable, we used homology modelling method to build the structure. The built structure was validated by Ramachandran plot which showed 90% of the residues in the allowed region while no residue was found in the disallowed region and the built structure was close to the crystal structure with Z-Score: -6.85. The structural superimposition studies with α- amylases of Bacillus subtilis and Streptococcus bovis showed distinct differences with RMSD values of 18.158Åand 7.091Å respectively which correlated with enzyme kinetics, indicating α-amylase is different among these bacteria.


Journal of Applied Microbiology | 2017

Effect of 4-methoxy 1-methyl 2-oxopyridine 3-carbamide on Staphylococcus aureus by inhibiting UDP-MurNAc-pentapeptide, peptidyl deformylase and uridine monophosphate kinase

Vimjam Swarupa; Abhijit Chaudhury; P.V.G. Krishna Sarma

The present study aimed to investigate the anti‐Staphylococcus aureus and anti‐biofilm properties of 4‐methoxy‐1‐methyl‐2‐oxopyridine‐3‐carbamide (MMOXC) on S. aureus UDP‐MurNAc‐pentapeptide (MurF), peptidyl deformylase (PDF) and uridine monophosphate kinase (UMPK).


Iranian biomedical journal | 2017

Phosphorylation of Staphylococcus aureus Protein-Tyrosine Kinase Affects the Function of Glucokinase and Biofilm Formation

D. Vasu; Pasupuleti Santhosh Kumar; Uppu Venkateswara Prasad; Vimjam Swarupa; Sthanikam Yeswanth; Lokanathan Srikanth; Manne Mudhu Sunitha; Abhijith Choudhary; Potukuchi Venkata Gurunadha Krishna Sarma

Background: When Staphylococcus aureus is grown in the presence of high concentration of external glucose, this sugar is phosphorylated by glucokinase (glkA) to form glucose-6-phosphate. This product subsequently enters into anabolic phase, which favors biofilm formation. The presence of ROK (repressor protein, open reading frame, sugar kinase) motif, phosphate-1 and -2 sites, and tyrosine kinase sites in glkA of S. aureus indicates that phosphorylation must regulate the glkA activity. The aim of the present study was to identify the effect of phosphorylation on the function of S. aureus glkA and biofilm formation. Methods: Pure glkA and protein-tyrosine kinase (BYK) of S. aureus ATCC 12600 were obtained by fractionating the cytosolic fractions of glkA1 and BYK-1 expressing recombinant clones through nickel metal chelate column. The pure glkA was used as a substrate for BYK, and the phosphorylation of glkA was confirmed by treating with reagent A and resolving in SDS-PAGE, as well as staining with reagent A. The kinetic parameters of glkA and phosphorylated glkA were determined spectrophotometrically, and in silico tools were used for validation. S. aureus was grown in brain heart infusion broth, which was supplemented with glucose, and then biofilm units were calculated. Results: Fourfold elevated glkA activity was observed upon the phosphorylation by BYK. Protein-protein docking analysis revealed that glkA structure docked close to the adenosine triphosphate-binding site of BYK structure corroborating the kinetic results. Further, S. aureus grown in the presence of elevated glucose concentration exhibited an increase in the rate of biofilm formation. Conclusion: The elevated function of glkA is an essential requirement for increased biofilm units in S. aureus, a key pathogenic factor that helps its survival and the progress of infection.


Advanced Biomedical Research | 2017

Cloning, Expression and Characterization of NAD Kinase from Staphylococcus aureus Involved in the Formation of NADP (H): A Key Molecule in the Maintaining of Redox Status and Biofilm Formation

UVenkateswara Prasad; D. Vasu; RRishi Gowtham; Krishna Pradeep; Vimjam Swarupa; Sthanikam Yeswanth; Abhijit Choudhary; P. V. G. K. Sarma

Background:Staphylococcus aureus has the ability to form biofilms on any niches, a key pathogenic factor of this organism and this phenomenon is directly related to the concentration of NADPH. The formation of NADP is catalyzed by NAD kinase (NADK) and this gene of S. aureus ATCC 12600 was cloned, sequenced, expressed and characterized. Materials and Methods: The NADK gene was polymerase chain reaction amplified from the chromosomal DNA of S. aureus ATCC 12600 and cloned in pQE 30 vector, sequenced and expressed in Escherichia coli DH5α. The pure protein was obtained by passing through nickel metal chelate agarose column. The enzyme kinetics of the enzyme and biofilm assay of the S. aureus was carried out in both aerobic and anaerobic conditions. The kinetics was further confirmed by the ability of the substrates to dock to the NADK structure. Results: The recombinant NADK exhibited single band with a molecular weight of 31kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the gene sequence (GenBank: JN645814) revealed presence of only one kind of NADK in all S. aureus strains. The enzyme exhibited very high affinity for NAD compared to adenosine triphosphate concurring with the docking results. A root-mean-square deviation value 14.039Š observed when NADK structure was superimposed with its human counterpart suggesting very low homology. In anaerobic conditions, higher biofilm units were found with decreased NADK activity. Conclusion: The results of this study suggest increased NADPH concentration in S. aureus plays a vital role in the biofilm formation and survival of this pathogen in any environmental conditions.

Collaboration


Dive into the Vimjam Swarupa's collaboration.

Top Co-Authors

Avatar

Sthanikam Yeswanth

Sri Venkateswara Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Potukuchi Venkata Gurunadha Krishna Sarma

Sri Venkateswara Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Uppu Venkateswara Prasad

Sri Venkateswara Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

D. Vasu

Sri Venkateswara Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Lokanathan Srikanth

Sri Venkateswara Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Pasupuleti Santhosh Kumar

Sri Venkateswara Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Katari Venkatesh

Sri Venkateswara Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manne Mudhu Sunitha

Sri Venkateswara Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge