Long Qiu
Zhejiang University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Long Qiu.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Fei Dai; Eviatar Nevo; Dezhi Wu; Jordi Comadran; Meixue Zhou; Long Qiu; Zhong-Hua Chen; Avigdor Beiles; Guoxiong Chen; Guoping Zhang
The Near East Fertile Crescent is well recognized as a primary center of barley origin, diversity, and domestication. A large number of wild barleys have been collected from the Tibetan Plateau, which is characterized by an extreme environment. We used genome-wide diversity array technology markers to analyze the genotypic division between wild barley from the Near East and Tibet. Our results confirmed the existence of Tibetan wild barley and suggested that the split between the wild barleys in the Near East and those in Tibet occurred around 2.76 million years ago (Mya). To test the concept of polyphyletic domestication of barley, we characterized a set of worldwide cultivated barley. Some Chinese hulless and six-rowed barleys showed a close relationship with Tibetan wild barley but showed no common ancestor with other cultivated barley. Our data support the concept of polyphyletic domestication of cultivated barley and indicate that the Tibetan Plateau and its vicinity is one of the centers of domestication of cultivated barley. The current results may be highly significant in exploring the elite germplasm for barley breeding, especially against cold and drought stresses.
Theoretical and Applied Genetics | 2011
Long Qiu; Dezhi Wu; Shafaqat Ali; Shengguan Cai; Fei Dai; Xiaoli Jin; Feibo Wu; Guoping Zhang
Tibetan wild barley is rich in genetic diversity with potential allelic variation useful for salinity-tolerant improvement of the crop. The objectives of this study were to evaluate salinity tolerance and analysis of the allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Salinity tolerance of 189 Tibetan wild barley accessions was evaluated in terms of reduced dry biomass under salinity stress. In addition, Na+ and K+ concentrations of 48 representative accessions differing in salinity tolerance were determined. Furthermore, the allelic and functional diversity of HvHKT1 and HvHKT2 was determined by association analysis as well as gene expression assay. There was a wide variation among wild barley genotypes in salt tolerance, with some accessions being higher in tolerance than cultivated barley CM 72, and salinity tolerance was significantly associated with K+/Na+ ratio. Association analysis revealed that HvHKT1 and HvHKT2 mainly control Na+ and K+ transporting under salinity stress, respectively, which was validated by further analysis of gene expression. The present results indicated that Tibetan wild barley offers elite alleles of HvHKT1 and HvHKT2 conferring salinity tolerance.
PLOS ONE | 2011
Dezhi Wu; Long Qiu; Lulu Xu; Lingzhen Ye; Mingxian Chen; Dongfa Sun; Zhong-Hua Chen; Haitao Zhang; Xiaoli Jin; Fei Dai; Guoping Zhang
The evaluation of both the genetic variation and the identification of salinity tolerant accessions of Tibetan annual wild barley (hereafter referred to as Tibetan barley) (Hordeum vulgare L. ssp. Spontaneum and H. vulgare L. ssp. agriocrithum) are essential for discovering and exploiting novel alleles involved in salinity tolerance. In this study, we examined tissue dry biomass and the Na+ and K+ contents of 188 Tibetan barley accessions in response to salt stress. We investigated the genetic variation of transcription factors HvCBF1, HvCBF3 and HvCBF4 within these accessions, conducting association analysis between these three genes and the respective genotypic salt tolerance. Salt stress significantly reduced shoot and root dry weight by 27.6% to 73.1% in the Tibetan barley lines. HvCBF1, HvCBF3 and HvCBF4 showed diverse sequence variation in amplicon as evident by the identification of single nucleotide polymorphisms (SNPs) and 3, 8 and 13 haplotypes, respectively. Furthermore, the decay of Linkage disequilibrium (LD) of chromosome 5 was 8.9 cM (r2<0.1). Marker bpb-4891 and haplotype 13 (Ps 610) of the HvCBF4 gene were significantly (P<0.05) and highly significantly (P<0.001) associated with salt tolerance. However, HvCBF1 and HvCBF3 genes were not associated with salinity tolerance. The accessions from haplotype 13 of the HvCBF4 gene showed high salinity tolerance, maintaining significantly lower Na+/K+ ratios and higher dry weight. It is thus proposed that these Tibetan barley accessions could be of value for enhancing salinity tolerance in cultivated barley.
Biologia Plantarum | 2011
Shafaqat Ali; Fanrong Zeng; Long Qiu; Gp Zhang
The effect of aluminum and chromium on two barley genotypes differing in Al tolerance was studied in a hydroponic experiment. Al stress decreased plant growth, biomass production, chlorophyll content and photosynthetic efficiency determined as variable to maximum chlorophyll fluorescence ratio (Fv/Fm), net photosynthetic rate (PN), intercellular CO2 concentration (ci), stomatal conductance (gs) and transpiration rate (E) less in an Al-tolerant genotype Gebeina than in an Al-sensitive genotype Shang 70–119. Cr stress also caused marked reduction in growth and photosynthetic traits in barley plants. Higher reduction was observed at pH 4.0 as compared to pH 6.5. Combined stress of Cr and Al, caused further reduction in growth and photosynthetic parameters.
Proteomics | 2014
Dezhi Wu; Qiufang Shen; Long Qiu; Yong Han; Linzheng Ye; Zahra Jabeen; Qingyao Shu; Guoping Zhang
Identification and characterization of proteins involved in salt tolerance are imperative for revealing its genetic mechanisms. In this study, ionic and proteomic responses of a Tibetan wild barley XZ16 and a well‐known salt‐tolerant barley cv. CM72 were analyzed using inductively coupled plasma‐optical emission spectrometer, 2DE, and MALDI‐TOF/TOF MS techniques to determine salt‐induced differences in element and protein profiles between the two genotypes. In total, 41 differentially expressed proteins were identified in roots and leaves, and they were associated with ion homeostasis, cell redox homeostasis, metabolic process, and photosynthesis. Under salinity stress, calmodulin, Na/K transporters, and H+‐ATPases were involved in establishment of ion homeostasis for barley plants. Moreover, ribulose‐1,5‐bisphosphate carboxylase/oxygenase activase and oxygen‐evolving enhancer proteins were significantly upregulated under salinity stress, indicating the great impact of salinity on photosynthesis. In comparison with CM72, XZ16 had greater relative dry weight and lower Na accumulation in the shoots under salinity stress. A higher expression of HvNHX1 in the roots, and some specific proteins responsible for ion homeostasis and cell redox homeostasis, was also found in XZ16 exposed to salt stress. The current results showed that Tibetan wild barley XZ16 and cultivated barley cultivar CM72 differ in the mechanism of salt tolerance.
PLOS ONE | 2011
Fei Dai; Long Qiu; Lingzhen Ye; Dezhi Wu; Meixue Zhou; Guoping Zhang
Background Endogenous phytase plays a crucial role in phytate degradation and is thus closely related to nutrient efficiency in barley products. The understanding of genetic information of phytase in barley can provide a useful tool for breeding new barley varieties with high phytase activity. Methodology/Principal Findings Quantitative trait loci (QTL) analysis for phytase activity was conducted using a doubled haploid population. Phytase protein was purified and identified by the LC-ESI MS/MS Shotgun method. Purple acid phosphatase (PAP) gene was sequenced and the position was compared with the QTL controlling phytase activity. A major QTL for phytase activity was mapped to chromosome 5 H in barley. The gene controlling phytase activity in the region was named as mqPhy. The gene HvPAP a was mapped to the same position as mqPhy, supporting the colinearity between HvPAP a and mqPhy. Conclusions/Significance It is the first report on QTLs for phytase activity and the results showed that HvPAP a, which shares a same position with the QTL, is a major phytase gene in barley grains.
Soil Science and Plant Nutrition | 2011
Shafaqat Ali; Fanrong Zeng; Boyin Qiu; Shengguan Cai; Long Qiu; Feibo Wu; Guoping Zhang
Aluminum (Al) and chromium (Cr) stresses often occur simultaneously in agricultural soils, and pose a great damage to crop growth, yield formation and product safety. In the current study, the influence of combined Al and Cr stresses on plant biomass, metal and nutrient contents was determined in comparison with that of Al or Cr stress alone. A hydroponic experiment was conducted to investigate the effect of pH, Al and Cr in the medium solution on the uptake of mineral elements as well as Al and Cr in the two barley genotypes differing in Al tolerance. Aluminum sensitive genotype Shang 70-119 had significantly higher Cr and Al contents in plants than Al-tolerant genotype Gebeina. Barley roots had much higher Al and Cr contents than above-ground plant parts. Chromium contents were much higher in the solution with pH 4.0 than in that with pH 6.5. Aluminum stress reduced phosphorus (P), calcium (Ca), magnesium (Mg), sulfur (S), copper (Cu), manganese (Mn), zinc (Zn) and boron (B) contents in roots and restrained potassium (K) and iron (Fe) from being translocated into shoots and leaves. Chromium stress resulted in reduced P, K, Mg, S, Fe, Zn and Mn contents in roots at pH 6.5 and P, K, Ca, Mg, S, Zn and Mn contents at pH 4.0. Translocation of all nutrients from roots to upper parts of plants was inhibited except Ca in pH 6.5 with Cr addition. Lower contents of all nutrients were observed at pH 4.0 as compared to pH 6.5. Combined stress of Cr and Al, on the whole, caused further reduction in mineral content in all plant parts of the two barley genotypes as compared to Al or Cr stress alone. Moreover, the reduction was more pronounced in Al sensitive genotype Shang 70-119.
Journal of Agricultural and Food Chemistry | 2010
Fei Dai; Long Qiu; Yang Xu; Shengguan Cai; Boyin Qiu; Guoping Zhang
The Qinghai-Tibetan Plateau in China is considered to be one of the original centers of cultivated barley. At present, little is known about the phytase activity (Phy) or phytic acid content (PA) in grains of Tibetan annual wild barley. Phy and PA were determined in grains of 135 wild and 72 cultivated barleys. Phy ranged from 171.3 to 1299.2 U kg(-1) and from 219.9 to 998.2 U kg(-1) for wild and cultivated barleys, respectively. PA and protein contents were much higher in wild barley than in cultivated barley. Tibetan annual wild barley showed a larger genetic diversity in phytase activity and phytic acid and protein contents and is of value for barley breeding. There is no significant correlation between phytase activity and phytic acid or protein content in barley grains, indicating that endogenous phytase activity had little effect on the accumulation of phytic acid.
Plant Physiology and Biochemistry | 2009
Kang Wei; Xiaoli Jin; Xin Chen; Feibo Wu; W. J. Zhou; Boyin Qiu; Long Qiu; Xudong Wang; Chengdao Li; Guoping Zhang
The effects of exogenous abscisic acid (ABA) and polyethylene glycol (PEG 6000) treatments on grain H(2)O(2), ABA and beta-amylase activity were studied during grain development in the spike culture experiments with variety Triumph and its ABA-insensitive mutant TL43 as the plant materials. The results showed that during grain development the two genotypes were similar in the pattern of ABA concentration change, but differed greatly in the pattern of H(2)O(2) concentration and beta-amylase activity changes. The beta-amylase activity was positively correlated with H(2)O(2) concentration, negatively correlated with ABA concentration, and it is mainly closely associated with continued high levels of ABA with respect to H(2)O(2). Water stress (PEG treatment) induced beta-amylase was associated with H(2)O(2) concentration but not with ABA concentration. Exogenous application of H(2)O(2) and Ascorbic acid (AsA) increased beta-amylase activity in Triumph but reduced that of TL43. However, the endogenous H(2)O(2) concentration in grains was always consistent with beta-amylase activity. A novel model was hypothesized from the current results to illustrate the relationship between H(2)O(2), ABA and beta-amylase synthesis for the barley exposed to abiotic stresses.
Journal of Agricultural and Food Chemistry | 2011
Lingzhen Ye; Fei Dai; Long Qiu; Dongfa Sun; Guoping Zhang
The formation of haze is a serious quality problem in beer production. It has been shown that the use of silica elute (SE)-ve malt (absence of molecular weight (MW) ∼14000 Da) for brewing can improve haze stability in the resultant beer, and the protein was identified as a barley trypsin inhibitor of the chloroform/methanol type (BTI-CMe). The objectives of this study were to determine (1) the allelic diversity of the gene controlling BTI-CMe in cultivated and Tibetan wild barley and (2) allele-specific (AS) markers for screening SE protein type. A survey of 172 Tibetan annual wild barley accessions and 71 cultivated barley genotypes was conducted, and 104 wild accessions and 35 cultivated genotypes were identified as SE+ve and 68 wild accessions and 36 cultivated genotypes as SE-ve. The allelic diversity of the gene controlling BTI-CMe was investigated by cloning, alignment, and association analysis. It was found that there were significant differences between the SE+ve and SE-ve types in single-nucleotide polymorphisms at 234 (SNP(234)), SNP(313), and SNP(385.) Furthermore, two sets of AS markers were developed to screen SE protein type based on SNP(313). AS-PCR had results very similar to those obtained by immunoblot method. Mapping analysis showed that the gene controlling the MW∼14 kDa band was located on the short arm of chromosome 3H, at the position of marker BPB-0527 (33.302 cM) in the Franklin/Yerong DH population.