Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Longbiao Guo is active.

Publication


Featured researches published by Longbiao Guo.


Theoretical and Applied Genetics | 2003

Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations

H. W. Mei; Zhikang Li; Qingyao Shu; Longbiao Guo; Y. P. Wang; Xinqiao Yu; C. S. Ying; L. J. Luo

To understand the types of gene action controlling seven quantitative traits in rice, we carried out quantitative trait locus (QTL) mapping in order to distinguish between the main-effect QTLs (M-QTLs) and digenic epistatic QTLs (E-QTLs) responsible for the trait performance of 254 recombinant inbred lines (RILs) from rice varieties Lemont/Teqing and two backcross hybrid (BCF1) populations derived from these RILs. We identified 44 M-QTL and 95 E-QTL pairs in the RI and BCF1 populations as having significant effects on the mean values and mid-parental heterosis of heading date, plant height, flag leaf length, flag leaf width, panicle length, spikelet number and spikelet fertility. The E-QTLs detected collectively explained a larger portion of the total phenotypic variation than the M-QTLs in both the RI and BCF1 populations. In both BCF1 populations, over-dominant (or under-dominant) loci were more important than additive and complete or partially dominant loci for M-QTLs and E-QTL pairs, thereby supporting prior findings that overdominance resulting from epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice.


Nature Genetics | 2014

Heterotrimeric G proteins regulate nitrogen-use efficiency in rice

Hongying Sun; Qian Qian; Kun Wu; Jijing Luo; Shuansuo Wang; Chengwei Zhang; Yanfei Ma; Qian Liu; Xianzhong Huang; Qingbo Yuan; Ruixi Han; Meng Zhao; Guojun Dong; Longbiao Guo; Xudong Zhu; Zhiheng Gou; Wen Wang; Yuejin Wu; Hong-Xuan Lin; Xiangdong Fu

The drive toward more sustainable agriculture has raised the profile of crop plant nutrient-use efficiency. Here we show that a major rice nitrogen-use efficiency quantitative trait locus (qNGR9) is synonymous with the previously identified gene DEP1 (DENSE AND ERECT PANICLES 1). The different DEP1 alleles confer different nitrogen responses, and genetic diversity analysis suggests that DEP1 has been subjected to artificial selection during Oryza sativa spp. japonica rice domestication. The plants carrying the dominant dep1-1 allele exhibit nitrogen-insensitive vegetative growth coupled with increased nitrogen uptake and assimilation, resulting in improved harvest index and grain yield at moderate levels of nitrogen fertilization. The DEP1 protein interacts in vivo with both the Gα (RGA1) and Gβ (RGB1) subunits, and reduced RGA1 or enhanced RGB1 activity inhibits nitrogen responses. We conclude that the plant G protein complex regulates nitrogen signaling and modulation of heterotrimeric G protein activity provides a strategy for environmentally sustainable increases in rice grain yield.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred lines and improving parental genome sequences

Zhenyu Gao; Shancen Zhao; Weiming He; Longbiao Guo; Youlin Peng; Jin-Jin Wang; Xiaosen Guo; Xuemei Zhang; Yuchun Rao; Chi Zhang; Guojun Dong; Fengya Zheng; Chang-Xin Lu; Jiang Hu; Qing Zhou; Hui-Juan Liu; Haiyang Wu; Jie Xu; Peixiang Ni; Dali Zeng; Deng-Hui Liu; Peng Tian; Li-Hui Gong; Chen Ye; Guangheng Zhang; Jian Wang; Fu-kuan Tian; Dawei Xue; Yi Liao; Li Zhu

Significance Hybrid rice developed in China has been contributing greatly to the world’s food production. The pioneer super hybrid rice developed by crossing 93–11 and Peiai 64s, Liang–You–Pei–Jiu has been widely grown in China and other Asia-Pacific regions for its high yield. Here, the quality genome sequences for both parental lines were presented and updated, and a high-resolution map of genome-wide graphic genotypes was constructed by deep resequencing a core population of 132 Liang–You–Pei–Jiu recombinant inbred lines. A series of yield-associated loci were fine-mapped, and two of them were delimited to regions each covering one candidate gene with the large recombinant inbred line population. The study provided an ideal platform for molecular breeding by quantitative trait loci cloning in rice. The growing world population and shrinkage of arable land demand yield improvement of rice, one of the most important staple crops. To elucidate the genetic basis of yield and uncover its associated loci in rice, we resequenced the core recombinant inbred lines of Liang–You–Pei–Jiu, the widely cultivated super hybrid rice, and constructed a high-resolution linkage map. We detected 43 yield-associated quantitative trait loci, of which 20 are unique. Based on the high-density physical map, the genome sequences of paternal variety 93–11 and maternal cultivar PA64s of Liang–You–Pei–Jiu were significantly improved. The large recombinant inbred line population combined with plentiful high-quality single nucleotide polymorphisms and insertions/deletions between parental genomes allowed us to fine-map two quantitative trait loci, qSN8 and qSPB1, and to identify days to heading8 and lax panicle1 as candidate genes, respectively. The quantitative trait locus qSN8 was further confirmed to be days to heading8 by a complementation test. Our study provided an ideal platform for molecular breeding by targeting and dissecting yield-associated loci in rice.


Plant Molecular Biology | 2010

Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice

Jiang Hu; Li Zhu; Dali Zeng; Zhenyu Gao; Longbiao Guo; Yunxia Fang; Guangheng Zhang; Guojun Dong; Meixian Yan; Jian Liu; Qian Qian

Leaf morphology is an important agronomic trait in rice breeding. We isolated three allelic mutants of NARROW AND ROLLED LEAF1 (nrl1) which showed phenotypes of reduced leaf width and semi-rolled leaves and different degrees of dwarfism. Microscopic analysis indicated that the nrl1-1 mutant had fewer longitudinal veins and smaller adaxial bulliform cells compared with the wild-type. The NRL1 gene was mapped to the chromosome 12 and encodes the cellulose synthase-like protein D4 (OsCslD4). Sequence analyses revealed single base substitutions in the three allelic mutants. Genetic complementation and over-expression of the OsCslD4 gene confirmed the identity of NRL1. The gene was expressed in all tested organs of rice at the heading stage and expression level was higher in vigorously growing organs, such as roots, sheaths and panicles than in elsewhere. In the mutant leaves, however, the expression level was lower than that in the wild-type. We conclude that OsCslD4 encoded by NRL1 plays a critical role in leaf morphogenesis and vegetative development in rice.


Cell Research | 2010

Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar

Shuqing Zhao; Jiang Hu; Longbiao Guo; Qian Qian; Hong-Wei Xue

As an important agronomic trait, inclination of leaves is crucial for crop architecture and grain yields. To understand the molecular mechanism controlling rice leaf angles, one rice leaf inclination2 (lc2, three alleles) mutant was identified and functionally characterized. Compared to wild-type plants, lc2 mutants have enlarged leaf angles due to increased cell division in the adaxial epidermis of lamina joint. The LC2 gene was isolated through positional cloning, and encodes a vernalization insensitive 3-like protein. Complementary expression of LC2 reversed the enlarged leaf angles of lc2 plants, confirming its role in controlling leaf inclination. LC2 is mainly expressed in the lamina joint during leaf development, and particularly, is induced by the phytohormones abscisic acid, gibberellic acid, auxin, and brassinosteroids. LC2 is localized in the nucleus and defects of LC2 result in altered expression of cell division and hormone-responsive genes, indicating an important role of LC2 in regulating leaf inclination and mediating hormone effects.


Theoretical and Applied Genetics | 2006

QTLs influencing panicle size detected in two reciprocal introgressive line (IL) populations in rice (Oryza sativa L.)

H. W. Mei; J. L. Xu; Zhikang Li; Xinqiao Yu; Longbiao Guo; Y. P. Wang; C. S. Ying; L. J. Luo

Two sets of reciprocal introgression line (IL) populations, i.e., ILs with Lemont as recurrent parent (IL_LT) and ILs with Teqing as recurrent parent (IL_TQ), were developed and evaluated for traits representing panicle size, including primary branch number (PBN), secondary branch number (SBN), and spikelet number per panicle (SNP). Together with the regression to recurrent parent by advanced backcross, transgressive segregations were observed for all traits. Correlation and regression analysis showed that SBN had much higher contribution to SNP than PBN. It was confirmed by the QTL analysis that many common loci were detected between SBN and SNP, in comparison with single common locus between PBN and SNP. One and three main effect QTLs (M-QTLs) were detected for PBN in IL_LT and IL_TQ, respectively. Six M-QTLs per trait per populations were associated with SBN and SNP. Less number and lower contribution of epistasis were detected in IL populations in comparison with mapping result from F2 or RI population. There were only four QTLs in fourteen loci (near 30%) commonly detected in both reciprocal IL populations implying the large impact of genetic background on QTLs expression.


Molecular Plant | 2015

A Rare Allele of GS2 Enhances Grain Size and Grain Yield in Rice

Jiang Hu; Yuexing Wang; Yunxia Fang; Longjun Zeng; Jie Xu; Haiping Yu; Zhenyuan Shi; Jiangjie Pan; Dong Zhang; Shujing Kang; Li Zhu; Guojun Dong; Longbiao Guo; Dali Zeng; Guangheng Zhang; Lihong Xie; Guosheng Xiong; Jiayang Li; Qian Qian

Grain size determines grain weight and affects grain quality. Several major quantitative trait loci (QTLs) regulating grain size have been cloned; however, our understanding of the underlying mechanism that regulates the size of rice grains remains fragmentary. Here, we report the cloning and characterization of a dominant QTL, grain size on chromosome 2 (GS2), which encodes Growth-Regulating Factor 4 (OsGRF4), a transcriptional regulator. GS2 localizes to the nucleus and may act as a transcription activator. A rare mutation of GS2 affecting the binding site of a microRNA, OsmiR396c, causes elevated expression of GS2/OsGRF4. The increase in GS2 expression leads to larger cells and increased numbers of cells, which thus enhances grain weight and yield. The introduction of this rare allele of GS2/OsGRF4 into rice cultivars could significantly enhance grain weight and increase grain yield, with possible applications in breeding high-yield rice varieties.


Marine Drugs | 2013

Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde.

Bin Li; Changlin Shan; Qing Zhou; Yuan Fang; Yangli Wang; Fei Xu; Li-Rong Han; Muhammad Ibrahim; Longbiao Guo; Guanlin Xie; Guochang Sun

This present study deals with synthesis, characterization and antibacterial activity of cross-linked chitosan-glutaraldehyde. Results from this study indicated that cross-linked chitosan-glutaraldehyde markedly inhibited the growth of antibiotic-resistant Burkholderia cepacia complex regardless of bacterial species and incubation time while bacterial growth was unaffected by solid chitosan. Furthermore, high temperature treated cross-linked chitosan-glutaraldehyde showed strong antibacterial activity against the selected strain 0901 although the inhibitory effects varied with different temperatures. In addition, physical-chemical and structural characterization revealed that the cross-linking of chitosan with glutaraldehyde resulted in a rougher surface morphology, a characteristic Fourier transform infrared (FTIR) band at 1559 cm−1, a specific X-ray diffraction peak centered at 2θ = 15°, a lower contents of carbon, hydrogen and nitrogen, and a higher stability of glucose units compared to chitosan based on scanning electron microscopic observation, FTIR spectra, X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that cross-linked chitosan-glutaraldehyde is promising to be developed as a new antibacterial drug.


Plant Molecular Biology | 2009

A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice

Baocai Zhang; Lingwei Deng; Qian Qian; Guangyan Xiong; Dali Zeng; Rui Li; Longbiao Guo; Jiayang Li; Yihua Zhou

Cellulose synthase (CESA) is a critical catalytic subunit of the cellulose synthase complex responsible for glucan chain elongation. Our knowledge about how CESA functions is still very limited. Here, we report the functional characterization of a rice mutant, brittle culm11, that shows growth retardation and dramatically reduced plant strength. Map-based cloning revealed that all the mutant phenotypes result from a missense mutation in OsCESA4 (G858R), a highly conserved residue at the end of the fifth transmembrane domain. The aberrant secondary cell wall of the mutant plants is attributed to significantly reduced cellulose content, abnormal secondary wall structure of sclerenchyma cells, and overall altered wall composition, as detected by chemical analyses and immunochemical staining. Importantly, we have found that this point mutation decreases the abundance of OsCESA4 in the plasma membrane, probably due to a defect in the process of CESA complex secretion. The data from our biochemical, genetic, and pharmacological analyses indicate that this residue is critical for maintaining the normal level of CESA proteins in the plasma membrane.


Euphytica | 2011

Identification of quantitative trait loci for Cd and Zn concentrations of brown rice grown in Cd-polluted soils

Xiao-qin Zhang; Guoping Zhang; Longbiao Guo; Huizhong Wang; Dali Zeng; Guojun Dong; Qian Qian; Dawei Xue

Low grain cadmium (Cd) and high grain zinc (Zn) rice cultivars have become the current rice breeding objectives. However, the genetic control of Cd and Zn concentrations in brown rice remains poorly understood, especially when grown in Cd-contaminated soil. In this study, quantitative trait loci (QTLs) associated with grain Cd and Zn concentrations and Cd/Zn ratio were identified using a doubled haploid population derived from a cross between japonica JX17 and indica ZYQ8 rice cultivars. Three and two QTLs were detected for Cd and Zn concentration in brown rice, respectively. Two QTLs associated with grain Cd/Zn ratio on chromosomes 3 and 6 were initially mapped. These QTLs accounted for 10.83–41.66% of the total variance of the three traits measured. Only one common locus on chromosome 6 was found for Cd concentration and Cd/Zn ratio. The lack of co-location of the QTLs for Cd and Zn concentrations in this mapping population suggests different genetic mechanisms. In summary, our results provide insight into the genetic basis of rice grain Cd and Zn accumulation; the isolated QTLs may be useful for marker-assisted selection and identification of genes associated with Cd and Zn accumulation in rice.

Collaboration


Dive into the Longbiao Guo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge