Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Longfei Huo is active.

Publication


Featured researches published by Longfei Huo.


Cancer Research | 2012

Epithelial–Mesenchymal Transition Induced by TNF-α Requires NF-κB–Mediated Transcriptional Upregulation of Twist1

Chia Wei Li; Weiya Xia; Longfei Huo; Seung Oe Lim; Yun Wu; Jennifer L. Hsu; Chi Hong Chao; Hirohito Yamaguchi; Neng Kai Yang; Qingqing Ding; Yan Wang; Yun Ju Lai; Adam M. LaBaff; Ting Jung Wu; Been-Ren Lin; Muh Hwa Yang; Gabriel N. Hortobagyi; Mien Chie Hung

Proinflammatory cytokines produced in the tumor microenvironment facilitate tumor development and metastatic progression. In particular, TNF-α promotes cancer invasion and angiogenesis associated with epithelial-mesenchymal transition (EMT); however, the mechanisms underlying its induction of EMT in cancer cells remain unclear. Here we show that EMT and cancer stemness properties induced by chronic treatment with TNF-α are mediated by the upregulation of the transcriptional repressor Twist1. Exposure to TNF-α rapidly induced Twist1 mRNA and protein expression in normal breast epithelial and breast cancer cells. Both IKK-β and NF-κB p65 were required for TNF-α-induced expression of Twist1, suggesting the involvement of canonical NF-κB signaling. In support of this likelihood, we defined a functional NF-κB-binding site in the Twist1 promoter, and overexpression of p65 was sufficient to induce transcriptional upregulation of Twist1 along with EMT in mammary epithelial cells. Conversely, suppressing Twist1 expression abrogated p65-induced cell migration, invasion, EMT, and stemness properties, establishing that Twist1 is required for NF-κB to induce these aggressive phenotypes in breast cancer cells. Taken together, our results establish a signaling axis through which the tumor microenvironment elicits Twist1 expression to promote cancer metastasis. We suggest that targeting NF-κB-mediated Twist1 upregulation may offer an effective a therapeutic strategy for breast cancer treatment.


Nature | 2013

EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2

Jia Shen; Weiya Xia; Yekaterina B. Khotskaya; Longfei Huo; Kotaro Nakanishi; Seung Oe Lim; Yi Du; Yan Wang; Wei Chao Chang; Chung-Hsuan Chen; Jennifer L. Hsu; Yun Wu; Yung Carmen Lam; Brian P. James; Xiuping Liu; Chang Gong Liu; Dinshaw J. Patel; Mien Chie Hung

MicroRNAs (miRNAs) are generated by two-step processing to yield small RNAs that negatively regulate target gene expression at the post-transcriptional level. Deregulation of miRNAs has been linked to diverse pathological processes, including cancer. Recent studies have also implicated miRNAs in the regulation of cellular response to a spectrum of stresses, such as hypoxia, which is frequently encountered in the poorly angiogenic core of a solid tumour. However, the upstream regulators of miRNA biogenesis machineries remain obscure, raising the question of how tumour cells efficiently coordinate and impose specificity on miRNA expression and function in response to stresses. Here we show that epidermal growth factor receptor (EGFR), which is the product of a well-characterized oncogene in human cancers, suppresses the maturation of specific tumour-suppressor-like miRNAs in response to hypoxic stress through phosphorylation of argonaute 2 (AGO2) at Tyr 393. The association between EGFR and AGO2 is enhanced by hypoxia, leading to elevated AGO2-Y393 phosphorylation, which in turn reduces the binding of Dicer to AGO2 and inhibits miRNA processing from precursor miRNAs to mature miRNAs. We also identify a long-loop structure in precursor miRNAs as a critical regulatory element in phospho-Y393-AGO2-mediated miRNA maturation. Furthermore, AGO2-Y393 phosphorylation mediates EGFR-enhanced cell survival and invasiveness under hypoxia, and correlates with poorer overall survival in breast cancer patients. Our study reveals a previously unrecognized function of EGFR in miRNA maturation and demonstrates how EGFR is likely to function as a regulator of AGO2 through novel post-translational modification. These findings suggest that modulation of miRNA biogenesis is important for stress response in tumour cells and has potential clinical implications.


Cancer Cell | 2012

The Crosstalk of mTOR/S6K1 and Hedgehog Pathways

Yan Wang; Qingqing Ding; Chia Jui Yen; Weiya Xia; Julie Izzo; Jing Yu Lang; Chia Wei Li; Jennifer L. Hsu; Stephanie A. Miller; Xuemei Wang; Dung Fang Lee; Jung Mao Hsu; Longfei Huo; Adam M. LaBaff; Dongping Liu; Tzu Hsuan Huang; Chien-Chen Lai; Fuu Jen Tsai; Wei Chao Chang; Chung-Hsuan Chen; Tsung Teh Wu; Navtej Buttar; Kenneth K. Wang; Yun Wu; Huamin Wang; Jaffer A. Ajani; Mien Chie Hung

Esophageal adenocarcinoma (EAC) is the most prevalent esophageal cancer type in the United States. The TNF-α/mTOR pathway is known to mediate the development of EAC. Additionally, aberrant activation of Gli1, downstream effector of the Hedgehog (HH) pathway, has been observed in EAC. In this study, we found that an activated mTOR/S6K1 pathway promotes Gli1 transcriptional activity and oncogenic function through S6K1-mediated Gli1 phosphorylation at Ser84, which releases Gli1 from its endogenous inhibitor, SuFu. Moreover, elimination of S6K1 activation by an mTOR pathway inhibitor enhances the killing effects of the HH pathway inhibitor. Together, our results established a crosstalk between the mTOR/S6K1 and HH pathways, which provides a mechanism for SMO-independent Gli1 activation and also a rationale for combination therapy for EAC.


Molecular Cell | 2009

KEAP1 E3 Ligase-Mediated Downregulation of NF-κB Signaling by Targeting IKKβ

Dung Fang Lee; Hsu Ping Kuo; Mo Liu; Chao Kai Chou; Weiya Xia; Yi Du; Jia Shen; Chun Te Chen; Longfei Huo; Ming Chuan Hsu; Chia Wei Li; Qingqing Ding; Tsai Lien Liao; Chien-Chen Lai; Ann Chi Lin; Ya Hui Chang; Shih-Feng Tsai; Long Yuan Li; Mien Chie Hung

IkappaB kinase beta (IKKbeta) is involved in tumor development and progression through activation of the nuclear factor (NF)-kappaB pathway. However, the molecular mechanism that regulates IKKbeta degradation remains largely unknown. Here, we show that a Cullin 3 (CUL3)-based ubiquitin ligase, Kelch-like ECH-associated protein 1 (KEAP1), is responsible for IKKbeta ubiquitination. Depletion of KEAP1 led to the accumulation and stabilization of IKKbeta and to upregulation of NF-kappaB-derived tumor angiogenic factors. A systematic analysis of the CUL3, KEAP1, and RBX1 genomic loci revealed a high percentage of genome loss and missense mutations in human cancers that failed to facilitate IKKbeta degradation. Our results suggest that the dysregulation of KEAP1-mediated IKKbeta ubiquitination may contribute to tumorigenesis.


Cancer Research | 2008

Down-regulation of Myeloid Cell Leukemia-1 through Inhibiting Erk/Pin 1 Pathway by Sorafenib Facilitates Chemosensitization in Breast Cancer

Qingqing Ding; Longfei Huo; Jer Yen Yang; Weiya Xia; Yongkun Wei; Yong Liao; Chun-Ju Chang; Yan Yang; Chien-Chen Lai; Dung Fang Lee; Chia Jui Yen; Yun Ju Rita Chen; Jung Mao Hsu; Hsu Ping Kuo; Chun Yi Lin; Fuu Jen Tsai; Long Yuan Li; Chang Hai Tsai; Mien Chie Hung

Myeloid cell leukemia-1 (Mcl-1), a Bcl-2-like antiapoptotic protein, plays a role in cell immortalization and chemoresistance in a number of human malignancies. A peptidyl-prolyl cis/trans isomerase, Pin1 is involved in many cellular events, such as cell cycle progression, cell proliferation, and differentiation through isomerizing prophosphorylated substrates. It has been reported that down-regulation of Pin1 induces apoptosis, and that Erk phosphorylates and up-regulates Mcl-1; however, the underlying mechanisms for the two phenomena are not clear yet. Here, we showed that Pin 1 stabilizes Mcl-1, which is required for Mcl-1 posphorylation by Erk. First, we found expression of Mcl-1 and Pin1 were positively correlated and associated with poor survival in human breast cancer. We then showed that Erk could phosphorylate Mcl-1 at two consensus residues, Thr 92 and 163, which is required for the association of Mcl-1 and Pin1, resulting in stabilization of Mcl-1. Moreover, Pin1 is also required for the up-regulation of Mcl-1 by Erk activation. Based on this newly identified mechanism of Mcl-1 stabilization, two strategies were used to overcome Mcl-1-mediated chemoresistance: inhibiting Erk by Sorafenib, an approved clinical anticancer drug, or knocking down Pin1 by using a SiRNA technique. In conclusion, the current report not only unravels a novel mechanism to link Erk/Pin1 pathway and Mcl-1-mediated chemoresistance but also provides a plausible combination therapy, Taxol (Paclitaxel) plus Sorafenib, which was shown to be effective in killing breast cancer cells.


Molecular Carcinogenesis | 2009

Nuclear Expression of Epidermal Growth Factor Receptor is a Novel Prognostic Value in Patients With Ovarian Cancer

Weiya Xia; Yongkun Wei; Yi Du; Jinsong Liu; Bin Chang; Yung-Luen Yu; Longfei Huo; Stephanie A. Miller; Mien Chie Hung

The epidermal growth factor receptor (EGFR) has previously been detected in the nucleus of cancer cells and primary tumors. We have reported that EGFR translocates from the plasma membrane to the nucleus. Accumulation of nuclear EGFR is linked to increased DNA synthesis and proliferation; however, the pathological significance of nuclear EGFR is not completely understood. Here, we sought to determine the predictive value of EGFR for the survival of ovarian cancer patients, through the examination of 221 cases of ovarian cancer tissues by immunohistochemical analysis to determine nuclear EGFR expression. In addition, we also examined cyclin D1 and Ki‐67 through immunohistochemisty. Furthermore, we examined nuclear EGFR levels in ovarian cancer cell lines treated with EGF, and primary ovarian tumor tissue using immunofluorescence analysis. Nuclear fractions extracted from serum‐starved cells treated with or without EGF were subjected to SDS–PAGE and Western blot analyses. We found that 28.3% of the cohort had high levels of nuclear EGFR, while 22.5% had low levels of nuclear EGFR, and 49.2% were negative for nuclear EGFR. Importantly, there was an inverse correlation between high nuclear EGFR, cyclin D1, and Ki‐67 with overall survival (P < 0.01, P < 0.09, P < 0.041). Additionally, nuclear EGFR correlated positively with increased levels of cyclin D1 and Ki‐67, both indicators for cell proliferation. Our findings indicate a pathological significance of nuclear EGFR that might be important for predicting clinical prognosis of ovarian cancer patients.


Molecular Cell | 2009

KEAP1 E3 ligase-mediated downregulation of NF-kappaB signaling by targeting IKKbeta.

Dung Fang Lee; Hsu-Ping Kuo; Mo Liu; Chao-Kai Chou; Weiya Xia; Yi Du; Jia Shen; Chun-Te Chen; Longfei Huo; Ming-Chuan Hsu; Chia-Wei Li; Qingqing Ding; Tsai-Lien Liao; Chien-Chen Lai; Ann-Chi Lin; Ya-Hui Chang; Shih-Feng Tsai; Long Yuan Li; Mien Chie Hung

IkappaB kinase beta (IKKbeta) is involved in tumor development and progression through activation of the nuclear factor (NF)-kappaB pathway. However, the molecular mechanism that regulates IKKbeta degradation remains largely unknown. Here, we show that a Cullin 3 (CUL3)-based ubiquitin ligase, Kelch-like ECH-associated protein 1 (KEAP1), is responsible for IKKbeta ubiquitination. Depletion of KEAP1 led to the accumulation and stabilization of IKKbeta and to upregulation of NF-kappaB-derived tumor angiogenic factors. A systematic analysis of the CUL3, KEAP1, and RBX1 genomic loci revealed a high percentage of genome loss and missense mutations in human cancers that failed to facilitate IKKbeta degradation. Our results suggest that the dysregulation of KEAP1-mediated IKKbeta ubiquitination may contribute to tumorigenesis.


Journal of Biological Chemistry | 2010

The translocon Sec61β localized in the inner nuclear membrane transports membrane-embedded EGF receptor to the nucleus

Ying Nai Wang; Hirohito Yamaguchi; Longfei Huo; Yi Du; Hong Jen Lee; Heng Huan Lee; Hongmei Wang; Jung Mao Hsu; Mien Chie Hung

Accumulating evidence indicates that endocytosis plays an essential role in the nuclear transport of the ErbB family members, such as epidermal growth factor receptor (EGFR) and ErbB-2. Nevertheless, how full-length receptors embedded in the endosomal membrane pass through the nuclear pore complexes and function as non-membrane-bound receptors in the nucleus remains unclear. Here we show that upon EGF treatment, the biotinylated cell surface EGFR is trafficked to the inner nuclear membrane (INM) through the nuclear pore complexes, remaining in a membrane-bound environment. We further find that importin β regulates EGFR nuclear transport to the INM in addition to the nucleus/nucleoplasm. Unexpectedly, the well known endoplasmic reticulum associated translocon Sec61β is found to reside in the INM and associate with EGFR. Knocking down Sec61β expression reduces EGFR level in the nucleoplasm portion and accumulates it in the INM portion. Thus, the Sec61β translocon plays an unrecognized role in the release of the membrane-anchored EGFR from the lipid bilayer of the INM to the nucleus. The newly identified Sec61β function provides an alternative pathway for nuclear transport that can be utilized by membrane-embedded proteins such as full-length EGFR.


Proceedings of the National Academy of Sciences of the United States of America | 2010

RNA helicase A is a DNA-binding partner for EGFR-mediated transcriptional activation in the nucleus

Longfei Huo; Ying-Nai Wang; Weiya Xia; Sheng-Chieh Hsu; Chien-Chen Lai; Long Yuan Li; Wei-Chao Chang; Yan Wang; Ming-Chuan Hsu; Yung-Luen Yu; Tzu-Hsuan Huang; Qingqing Ding; Chung-Hsuan Chen; Chang Hai Tsai; Mien Chie Hung

EGF induces the translocation of EGF receptor (EGFR) from the cell surface to the nucleus where EGFR activates gene transcription through its binding to an AT-rich sequence (ATRS) of the target gene promoter. However, how EGFR, without a DNA-binding domain, can bind to the gene promoter is unclear. In the present study, we show that RNA helicase A (RHA) is an important mediator for EGFR-induced gene transactivation. EGF stimulates the interaction of EGFR with RHA in the nucleus of cancer cells. The EGFR/RHA complex then associates with the target gene promoter through binding of RHA to the ATRS of the target gene promoter to activate its transcription. Knockdown of RHA expression in cancer cells abrogates the binding of EGFR to the target gene promoter, thereby reducing EGF/EGFR-induced gene expression. In addition, interruption of EGFR–RHA interaction decreases the EGFR-induced promoter activity. Consistently, we observed a positive correlation of the nuclear expression of EGFR, RHA, and cyclin D1 in human breast cancer samples. These results indicate that RHA is a DNA-binding partner for EGFR-mediated transcriptional activation in the nucleus.


Journal of Clinical Investigation | 2011

APOBEC3G promotes liver metastasis in an orthotopic mouse model of colorectal cancer and predicts human hepatic metastasis

Qingqing Ding; Chun-Ju Chang; Xiaoming Xie; Weiya Xia; Jer Yen Yang; Shao Chun Wang; Yan Wang; Jiahong Xia; Libo Chen; Changchung Cai; Huabin Li; Chia Jui Yen; Hsu Ping Kuo; Dung Fang Lee; Jing Yu Lang; Longfei Huo; Xiaoyun Cheng; Yun Ju Chen; Chia Wei Li; Long Bin Jeng; Jennifer L. Hsu; Long Yuan Li; Alai Tan; Steven A. Curley; Lee M. Ellis; Raymond N. DuBois; Mien Chie Hung

Colorectal cancer is the second leading cause of death from cancer in the United States. Metastases in the liver, the most common metastatic site for colorectal cancer, are found in one-third of the patients who die of colorectal cancer. Currently, the genes and molecular mechanisms that are functionally critical in modulating colorectal cancer hepatic metastasis remain unclear. Here, we report our studies using functional selection in an orthotopic mouse model of colorectal cancer to identify a set of genes that play an important role in mediating colorectal cancer liver metastasis. These genes included APOBEC3G, CD133, LIPC, and S100P. Clinically, we found these genes to be highly expressed in a cohort of human hepatic metastasis and their primary colorectal tumors, suggesting that it might be possible to use these genes to predict the likelihood of hepatic metastasis. We have further revealed what we believe to be a novel mechanism in which APOBEC3G promotes colorectal cancer hepatic metastasis through inhibition of miR-29-mediated suppression of MMP2. Together, our data elucidate key factors and mechanisms involved in colorectal cancer liver metastasis, which could be potential targets for diagnosis and treatment.

Collaboration


Dive into the Longfei Huo's collaboration.

Top Co-Authors

Avatar

Mien Chie Hung

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Weiya Xia

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Hsu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Qingqing Ding

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yan Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Chia Wei Li

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Dung Fang Lee

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Hirohito Yamaguchi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yi Du

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Chien-Chen Lai

National Chung Hsing University

View shared research outputs
Researchain Logo
Decentralizing Knowledge