Lonneke Haer-Wigman
Radboud University Nijmegen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lonneke Haer-Wigman.
Human Molecular Genetics | 2015
Lonneke Haer-Wigman; Hadas Newman; Rina Leibu; Nathalie Bax; Hagit N. Baris; Leah Rizel; Eyal Banin; Amir Massarweh; Susanne Roosing; Dirk J. Lefeber; Marijke N. Zonneveld-Vrieling; Ofer Isakov; Noam Shomron; Dror Sharon; Anneke I. den Hollander; Carel B. Hoyng; Frans P.M. Cremers; Tamar Ben-Yosef
Retinitis pigmentosa (RP), the most common form of inherited retinal degeneration, is clinically and genetically heterogeneous and can appear as syndromic or non-syndromic. Mucopolysaccharidosis type IIIC (MPS IIIC) is a lethal disorder, caused by mutations in the heparan-alpha-glucosaminide N-acetyltransferase (HGSNAT) gene and characterized by progressive neurological deterioration, with retinal degeneration as a prominent feature. We identified HGSNAT mutations in six patients with non-syndromic RP. Whole exome sequencing (WES) in an Ashkenazi Jewish Israeli RP patient revealed a novel homozygous HGSNAT variant, c.370A>T, which leads to partial skipping of exon 3. Screening of 66 Ashkenazi RP index cases revealed an additional family with two siblings homozygous for c.370A>T. WES in three Dutch siblings with RP revealed a complex HGSNAT variant, c.[398G>C; 1843G>A] on one allele, and c.1843G>A on the other allele. HGSNAT activity levels in blood leukocytes of patients were reduced compared with healthy controls, but usually higher than those in MPS IIIC patients. All patients were diagnosed with non-syndromic RP and did not exhibit neurological deterioration, or any phenotypic features consistent with MPS IIIC. Furthermore, four of the patients were over 60 years old, exceeding by far the life expectancy of MPS IIIC patients. HGSNAT is highly expressed in the mouse retina, and we hypothesize that the retina requires higher HGSNAT activity to maintain proper function, compared with other tissues associated with MPS IIIC, such as the brain. This report broadens the spectrum of phenotypes associated with HGSNAT mutations and highlights the critical function of HGSNAT in the human retina.
European Journal of Human Genetics | 2017
Lonneke Haer-Wigman; Wendy A. G. van Zelst-Stams; Rolph Pfundt; L. Ingeborgh van den Born; Caroline C. W. Klaver; Joke B. G. M. Verheij; Carel B. Hoyng; Martijn H. Breuning; Camiel J. F. Boon; Anneke J.A. Kievit; Virginie J. M. Verhoeven; Jan Willem R. Pott; Suzanne C.E.H. Sallevelt; Johanna M. van Hagen; Astrid S. Plomp; Hester Y. Kroes; Stefan H. Lelieveld; Jayne Y. Hehir-Kwa; Steven Castelein; Marcel R. Nelen; H. Scheffer; Dorien Lugtenberg; Frans P.M. Cremers; Lies H. Hoefsloot; Helger G. Yntema
Inherited eye disorders have a large clinical and genetic heterogeneity, which makes genetic diagnosis cumbersome. An exome-sequencing approach was developed in which data analysis was divided into two steps: the vision gene panel and exome analysis. In the vision gene panel analysis, variants in genes known to cause inherited eye disorders were assessed for pathogenicity. If no causative variants were detected and when the patient consented, the entire exome data was analyzed. A total of 266 Dutch patients with different types of inherited eye disorders, including inherited retinal dystrophies, cataract, developmental eye disorders and optic atrophy, were investigated. In the vision gene panel analysis (likely), causative variants were detected in 49% and in the exome analysis in an additional 2% of the patients. The highest detection rate of (likely) causative variants was in patients with inherited retinal dystrophies, for instance a yield of 63% in patients with retinitis pigmentosa. In patients with developmental eye defects, cataract and optic atrophy, the detection rate was 50, 33 and 17%, respectively. An exome-sequencing approach enables a genetic diagnosis in patients with different types of inherited eye disorders using one test. The exome approach has the same detection rate as targeted panel sequencing tests, but offers a number of advantages. For instance, the vision gene panel can be frequently and easily updated with additional (novel) eye disorder genes. Determination of the genetic diagnosis improved the clinical diagnosis, regarding the assessment of the inheritance pattern as well as future disease perspective.
PLOS ONE | 2015
Maleeha Maria; Muhammad Ajmal; Maleeha Azam; Nadia K. Waheed; Sorath Noorani Siddiqui; Bilal Mustafa; Humaira Ayub; Liaqat Ali; Shakeel Ahmad; Shazia Micheal; Alamdar Hussain; Syed Tahir Abbas Shah; Syeda Hafiza Benish Ali; Waqas Ahmed; Yar Muhammad Khan; Anneke I. den Hollander; Lonneke Haer-Wigman; Rob W.J. Collin; Muhammad Imran Khan; Raheel Qamar; Frans P.M. Cremers
Background Homozygosity mapping has facilitated the identification of the genetic causes underlying inherited diseases, particularly in consanguineous families with multiple affected individuals. This knowledge has also resulted in a mutation dataset that can be used in a cost and time effective manner to screen frequent population-specific genetic variations associated with diseases such as inherited retinal disease (IRD). Methods We genetically screened 13 families from a cohort of 81 Pakistani IRD families diagnosed with Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), congenital stationary night blindness (CSNB), or cone dystrophy (CD). We employed genome-wide single nucleotide polymorphism (SNP) array analysis to identify homozygous regions shared by affected individuals and performed Sanger sequencing of IRD-associated genes located in the sizeable homozygous regions. In addition, based on population specific mutation data we performed targeted Sanger sequencing (TSS) of frequent variants in AIPL1, CEP290, CRB1, GUCY2D, LCA5, RPGRIP1 and TULP1, in probands from 28 LCA families. Results Homozygosity mapping and Sanger sequencing of IRD-associated genes revealed the underlying mutations in 10 families. TSS revealed causative variants in three families. In these 13 families four novel mutations were identified in CNGA1, CNGB1, GUCY2D, and RPGRIP1. Conclusions Homozygosity mapping and TSS revealed the underlying genetic cause in 13 IRD families, which is useful for genetic counseling as well as therapeutic interventions that are likely to become available in the near future.
Ophthalmology | 2017
Laurence Pierrache; Adva Kimchi; Rinki Ratnapriya; Lisa Roberts; Galuh D.N. Astuti; Alexey Obolensky; Avigail Beryozkin; Martha J. Tjon-Fo-Sang; J Schuil; Caroline C. W. Klaver; Ernie M.H.F. Bongers; Lonneke Haer-Wigman; Nicoline Schalij; Martijn H. Breuning; Gratia M. Fischer; Eyal Banin; Raj S. Ramesar; Anand Swaroop; L. Ingeborgh van den Born; Dror Sharon; Frans P.M. Cremers
PURPOSE To identify the genetic cause of and describe the phenotype in 4 families with autosomal recessive retinitis pigmentosa (arRP) that can be associated with pseudocoloboma. DESIGN Case series. PARTICIPANTS Seven patients from 4 unrelated families with arRP, among whom 3 patients had bilateral early-onset macular pseudocoloboma. METHODS We performed homozygosity mapping and whole-exome sequencing in 5 probands and 2 unaffected family members from 4 unrelated families. Subsequently, Sanger sequencing and segregation analysis were performed in additional family members. We reviewed the medical history of individuals carrying IDH3A variants and performed additional ophthalmic examinations, including full-field electroretinography, fundus photography, fundus autofluorescence imaging, and optical coherence tomography. MAIN OUTCOME MEASURES IDH3A variants, age at diagnosis, visual acuity, fundus appearance, visual field, and full-field electroretinography, fundus autofluorescence, and optical coherence tomography findings. RESULTS We identified 7 different variants in IDH3A in 4 unrelated families, that is, 5 missense, 1 nonsense, and 1 frameshift variant. All participants showed symptoms early in life, ranging from night blindness to decreased visual acuity, and were diagnosed between the ages of 1 and 11 years. Four participants with biallelic IDH3A variants displayed a typical arRP phenotype and 3 participants were diagnosed with arRP and pseudocoloboma of the macula. CONCLUSIONS IDH3A variants were identified as a novel cause of typical arRP in some individuals associated with macular pseudocoloboma. We observed both phenotypes in 2 siblings carrying the same compound heterozygous variants, which could be explained by variable disease expression and warrants caution when making assertions about genotype-phenotype correlations.
Human Molecular Genetics | 2016
Nicola Bedoni; Lonneke Haer-Wigman; Veronika Vaclavik; Viet H. Tran; Pietro Farinelli; Sara Balzano; Beryl Royer-Bertrand; Mohammed El-Asrag; Olivier Bonny; Christos Ikonomidis; Yan Litzistorf; Konstantinos Nikopoulos; Georgia G. Yioti; Maria Stefaniotou; Martin McKibbin; Adam P. Booth; Jamie M Ellingford; Graeme C.M. Black; Carmel Toomes; Chris F. Inglehearn; Carel B. Hoyng; Nathalie Bax; Caroline C. W. Klaver; Alberta A.H.J. Thiadens; Fabien Murisier; Daniel F. Schorderet; Manir Ali; Frans P.M. Cremers; Sten Andréasson; Francis L. Munier
Hereditary retinal degenerations encompass a group of genetic diseases characterized by extreme clinical variability. Following next-generation sequencing and autozygome-based screening of patients presenting with a peculiar, recessive form of cone-dominated retinopathy, we identified five homozygous variants [p.(Asp594fs), p.(Gln117*), p.(Met712fs), p.(Ile756Phe), and p.(Glu543Lys)] in the polyglutamylase-encoding gene TTLL5, in eight patients from six families. The two male patients carrying truncating TTLL5 variants also displayed a substantial reduction in sperm motility and infertility, whereas those carrying missense changes were fertile. Defects in this polyglutamylase in humans have recently been associated with cone photoreceptor dystrophy, while mouse models carrying truncating mutations in the same gene also display reduced fertility in male animals. We examined the expression levels of TTLL5 in various human tissues and determined that this gene has multiple viable isoforms, being highly expressed in testis and retina. In addition, antibodies against TTLL5 stained the basal body of photoreceptor cells in rat and the centrosome of the spermatozoon flagellum in humans, suggesting a common mechanism of action in these two cell types. Taken together, our data indicate that mutations in TTLL5 delineate a novel, allele-specific syndrome causing defects in two as yet pathogenically unrelated functions, reproduction and vision.
Genes | 2017
Anna Tracewska-Siemiątkowska; Lonneke Haer-Wigman; Daniëlle G.M. Bosch; Deborah A. Nickerson; Michael J. Bamshad; Maartje van de Vorst; Nanna Dahl Rendtorff; Claes Möller; Ulrika Kjellström; Sten Andréasson; Frans P.M. Cremers; Lisbeth Tranebjærg
Whole exome sequence analysis was performed in a Swedish mother–father-affected proband trio with a phenotype characterized by progressive retinal degeneration with congenital nystagmus, profound congenital hearing impairment, primary amenorrhea, agenesis of the corpus callosum, and liver disease. A homozygous variant c.806T > C, p.(F269S) in the tyrosyl-tRNA synthetase gene (YARS) was the only identified candidate variant consistent with autosomal recessive inheritance. Mutations in YARS have previously been associated with both autosomal dominant Charcot-Marie-Tooth syndrome and a recently reported autosomal recessive multiorgan disease. Herein, we propose that mutations in YARS underlie another clinical phenotype adding a second variant of the disease, including retinitis pigmentosa and deafness, to the spectrum of YARS-associated disorders.
Journal of Medical Genetics | 2017
Thanh-Minh T. Nguyen; Sarah Hull; Ronald Roepman; L. Ingeborgh van den Born; Machteld M. Oud; Erik de Vrieze; Lisette Hetterschijt; Stef J.F. Letteboer; Sylvia E. C. van Beersum; Ellen A.W. Blokland; Helger G. Yntema; Frans P.M. Cremers; Paul A. van der Zwaag; Gavin Arno; Erwin van Wijk; Andrew R. Webster; Lonneke Haer-Wigman
Background Recent findings suggesting that Abelson helper integration site 1 (AHI1) is involved in non-syndromic retinal disease have been debated, as the functional significance of identified missense variants was uncertain. We assessed whether AHI1 variants cause non-syndromic retinitis pigmentosa (RP). Methods Exome sequencing was performed in three probands with RP. The effects of the identified missense variants in AHI1 were predicted by three-dimensional structure homology modelling. Ciliary parameters were evaluated in patient’s fibroblasts, and recombinant mutant proteins were expressed in ciliated retinal pigmented epithelium cells. Results In the three patients with RP, three sets of compound heterozygous variants were detected in AHI1 (c.2174G>A; p.Trp725* and c.2258A>T; p.Asp753Val, c.660delC; p.Ser221Glnfs*10 and c.2090C>T; p.Pro697Leu, c.2087A>G; p.His696Arg and c.2429C>T; p.Pro810Leu). All four missense variants were present in the conserved WD40 domain of Jouberin, the ciliary protein encoded by AHI1, with variable predicted implications for the domain structure. No significant changes in the percentage of ciliated cells, nor in cilium length or intraflagellar transport were detected. However, expression of mutant recombinant Jouberin in ciliated cells showed a significantly decreased enrichment at the ciliary base. Conclusions This report confirms that mutations in AHI1 can underlie autosomal recessive RP. Moreover, it structurally and functionally validates the effect of the RP-associated AHI1 variants on protein function, thus proposing a new genotype–phenotype correlation for AHI1 mutation associated retinal ciliopathies.
Human Mutation | 2018
Muriël Messchaert; Lonneke Haer-Wigman; Muhammad Imran Khan; Frans P.M. Cremers; Rob W.J. Collin
Mutations in Eyes shut homolog (EYS) are one of the most common causes of autosomal recessive (ar) retinitis pigmentosa (RP), a progressive blinding disorder. The exact function of the EYS protein and the pathogenic mechanisms underlying EYS‐associated RP are still poorly understood, which hampers the interpretation of the causality of many EYS variants discovered to date. We collected all reported EYS variants present in 377 arRP index cases published before June 2017, and uploaded them in the Leiden Open Variation Database (www.LOVD.nl/EYS). We also describe 36 additional index cases, carrying 26 novel variants. Of the 297 unique EYS variants identified, almost half (n = 130) are predicted to result in premature truncation of the EYS protein. Classification of all variants using the American College of Medical Genetics and Genomics guidelines revealed that the predicted pathogenicity of these variants cover the complete spectrum ranging from likely benign to pathogenic, although especially missense variants largely fall in the category of uncertain significance. Besides the identification of likely benign alleles previously reported as being probably pathogenic, our comprehensive analysis underscores the need of functional assays to assess the causality of EYS variants, in order to improve molecular diagnostics and counseling of patients with EYS‐associated RP.
Human Molecular Genetics | 2018
Sanne Broekman; E. van Wijk; Frans P.M. Cremers; Alaa Abu-Diab; Samer Khateb; Lonneke Haer-Wigman; Lina Basel-Vanagaite; E. de Vrieze
Retinitis pigmentosa (RP), the most common form of inherited retinal degeneration, is associated with different groups of genes, including those encoding proteins involved in centriole and cilium biogenesis. Exome sequencing revealed a homozygous nonsense mutation [c.304_305delGA (p. D102*)] in POC5, encoding the Proteome Of Centriole 5 protein, in a patient with RP, short stature, microcephaly and recurrent glomerulonephritis. The POC5 gene is ubiquitously expressed, and immunohistochemistry revealed a distinct POC5 localization at the photoreceptor connecting cilium. Morpholino-oligonucleotide-induced knockdown of poc5 translation in zebrafish resulted in decreased length of photoreceptor outer segments and a decreased visual motor response, a measurement of retinal function. These phenotypes could be rescued by wild-type human POC5 mRNA. These findings demonstrate that Poc5 is important for normal retinal development and function. Altogether, this study presents POC5 as a novel gene involved autosomal recessively inherited RP, and strengthens the hypothesis that mutations in centriolar proteins are important cause of retinal dystrophies.
Genes | 2018
Galuh D.N. Astuti; L. van den Born; Mubeen Khan; Christian P. Hamel; Béatrice Bocquet; Gaël Manes; Mathieu Quinodoz; Manir Ali; Carmel Toomes; Martin McKibbin; Mohammed El-Asrag; Lonneke Haer-Wigman; Chris F. Inglehearn; Graeme C.M. Black; Carel B. Hoyng; Frans P.M. Cremers; Susanne Roosing
Inherited retinal diseases (IRDs) display an enormous genetic heterogeneity. Whole exome sequencing (WES) recently identified genes that were mutated in a small proportion of IRD cases. Consequently, finding a second case or family carrying pathogenic variants in the same candidate gene often is challenging. In this study, we searched for novel candidate IRD gene-associated variants in isolated IRD families, assessed their causality, and searched for novel genotype-phenotype correlations. Whole exome sequencing was performed in 11 probands affected with IRDs. Homozygosity mapping data was available for five cases. Variants with minor allele frequencies ≤ 0.5% in public databases were selected as candidate disease-causing variants. These variants were ranked based on their: (a) presence in a gene that was previously implicated in IRD; (b) minor allele frequency in the Exome Aggregation Consortium database (ExAC); (c) in silico pathogenicity assessment using the combined annotation dependent depletion (CADD) score; and (d) interaction of the corresponding protein with known IRD-associated proteins. Twelve unique variants were found in 11 different genes in 11 IRD probands. Novel autosomal recessive and dominant inheritance patterns were found for variants in Small Nuclear Ribonucleoprotein U5 Subunit 200 (SNRNP200) and Zinc Finger Protein 513 (ZNF513), respectively. Using our pathogenicity assessment, a variant in DEAH-Box Helicase 32 (DHX32) was the top ranked novel candidate gene to be associated with IRDs, followed by eight medium and lower ranked candidate genes. The identification of candidate disease-associated sequence variants in 11 single families underscores the notion that the previously identified IRD-associated genes collectively carry > 90% of the defects implicated in IRDs. To identify multiple patients or families with variants in the same gene and thereby provide extra proof for pathogenicity, worldwide data sharing is needed.