Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lora R. McGuinness is active.

Publication


Featured researches published by Lora R. McGuinness.


Geomicrobiology Journal | 2011

Acetate availability and its influence on sustainable bioremediation of Uranium-contaminated groundwater

Kenneth H. Williams; Philip E. Long; James A. Davis; Michael J. Wilkins; A. Lucie N'Guessan; Carl I. Steefel; Li Yang; Darrell R. Newcomer; Frank A. Spane; Lee J. Kerkhof; Lora R. McGuinness; Richard Dayvault; Derek R. Lovley

Field biostimulation experiments at the U.S. Department of Energys Integrated Field Research Challenge (IFRC) site in Rifle, Colorado, have demonstrated that uranium concentrations in groundwater can be decreased to levels below the U.S. Environmental Protection Agencys (EPA) drinking water standard (0.126 μM). During successive summer experiments – referred to as “Winchester” (2007) and “Big Rusty” (2008) - acetate was added to the aquifer to stimulate the activity of indigenous dissimilatory metal-reducing bacteria capable of reductively immobilizing uranium. The two experiments differed in the length of injection (31 vs. 110 days), the maximum concentration of acetate (5 vs. 30 mM), and the extent to which iron reduction (“Winchester”) or sulfate reduction (“Big Rusty”) was the predominant metabolic process. In both cases, rapid removal of U(VI) from groundwater occurred at calcium concentrations (6 mM) and carbonate alkalinities (8 meq/L) where Ca-UO2-CO3 ternary complexes constitute >90% of uranyl species in groundwater. Complete consumption of acetate and increased alkalinity (>30 meq/L) accompanying the onset of sulfate reduction corresponded to temporary increases in U(VI); however, by increasing acetate concentrations in excess of available sulfate (10 mM), low U(VI) concentrations (0.1–0.05 μM) were achieved for extended periods of time (>140 days). Uniform delivery of acetate during “Big Rusty” was impeded due to decreases in injection well permeability, likely resulting from biomass accumulation and carbonate and sulfide mineral precipitation. Such decreases were not observed during the short-duration “Winchester” experiment. Terminal restriction fragment length polymorphism (TRFLP) analysis of 16S rRNA genes demonstrated that Geobacter sp. and Geobacter-like strains dominated the groundwater community profile during iron reduction, with 13C stable isotope probing (SIP) results confirming these strains were actively utilizing acetate to replicate their genome during the period of optimal U(VI) removal. Gene transcript levels during “Big Rusty” were quantified for Geobacter-specific citrate synthase (gltA), with ongoing transcription during sulfate reduction indicating that members of the Geobacteraceae were still active and likely contributing to U(VI) removal. The persistence of reducible Fe(III) in sediments recovered from an area of prolonged (110-day) sulfate reduction is consistent with this conclusion. These results indicate that acetate availability and its ability to sustain the activity of iron- and uranyl-respiring Geobacter strains during sulfate reduction exerts a primary control on optimized U(VI) removal from groundwater at the Rifle IFRC site over extended time scales (>50 days).


Applied and Environmental Microbiology | 2008

Characterization of Nitrifying, Denitrifying, and Overall Bacterial Communities in Permeable Marine Sediments of the Northeastern Gulf of Mexico

Heath J. Mills; Evan M. Hunter; Mike Humphrys; Lee J. Kerkhof; Lora R. McGuinness; Markus Huettel; Joel E. Kostka

ABSTRACT Sandy or permeable sediment deposits cover the majority of the shallow ocean seafloor, and yet the associated bacterial communities remain poorly described. The objective of this study was to expand the characterization of bacterial community diversity in permeable sediment impacted by advective pore water exchange and to assess effects of spatial, temporal, hydrodynamic, and geochemical gradients. Terminal restriction fragment length polymorphism (TRFLP) was used to analyze nearly 100 sediment samples collected from two northeastern Gulf of Mexico subtidal sites that primarily differed in their hydrodynamic conditions. Communities were described across multiple taxonomic levels using universal bacterial small subunit (SSU) rRNA targets (RNA- and DNA-based) and functional markers for nitrification (amoA) and denitrification (nosZ). Clonal analysis of SSU rRNA targets identified several taxa not previously detected in sandy sediments (i.e., Acidobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, and Firmicutes). Sequence diversity was high among the overall bacterial and denitrifying communities, with members of the Alphaproteobacteria predominant in both. Diversity of bacterial nitrifiers (amoA) remained comparatively low and did not covary with the other gene targets. TRFLP fingerprinting revealed changes in sequence diversity from the family to species level across sediment depth and study site. The high diversity of facultative denitrifiers was consistent with the high permeability, deeper oxygen penetration, and high rates of aerobic respiration determined in these sediments. The high relative abundance of Gammaproteobacteria in RNA clone libraries suggests that this group may be poised to respond to short-term periodic pulses of growth substrates, and this observation warrants further investigation.


The ISME Journal | 2014

Bacterial genome replication at subzero temperatures in permafrost

Steven J. Tuorto; Phillip Darias; Lora R. McGuinness; Nicolai Panikov; Tingjun Zhang; Max M. Häggblom; Lee J. Kerkhof

Microbial metabolic activity occurs at subzero temperatures in permafrost, an environment representing ∼25% of the global soil organic matter. Although much of the observed subzero microbial activity may be due to basal metabolism or macromolecular repair, there is also ample evidence for cellular growth. Unfortunately, most metabolic measurements or culture-based laboratory experiments cannot elucidate the specific microorganisms responsible for metabolic activities in native permafrost, nor, can bulk approaches determine whether different members of the microbial community modulate their responses as a function of changing subzero temperatures. Here, we report on the use of stable isotope probing with 13C-acetate to demonstrate bacterial genome replication in Alaskan permafrost at temperatures of 0 to −20 °C. We found that the majority (80%) of operational taxonomic units detected in permafrost microcosms were active and could synthesize 13C-labeled DNA when supplemented with 13C-acetate at temperatures of 0 to −20 °C during a 6-month incubation. The data indicated that some members of the bacterial community were active across all of the experimental temperatures, whereas many others only synthesized DNA within a narrow subzero temperature range. Phylogenetic analysis of 13C-labeled 16S rRNA genes revealed that the subzero active bacteria were members of the Acidobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes and Proteobacteria phyla and were distantly related to currently cultivated psychrophiles. These results imply that small subzero temperature changes may lead to changes in the active microbial community, which could have consequences for biogeochemical cycling in permanently frozen systems.


PLOS ONE | 2016

The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice

Sara C. Campbell; Paul J. Wisniewski; Michael Noji; Lora R. McGuinness; Max M. Häggblom; Stanley Lightfoot; Laurie B. Joseph; Lee J. Kerkhof

Background The gut microbiota is now known to play an important role contributing to inflammatory-based chronic diseases. This study examined intestinal integrity/inflammation and the gut microbial communities in sedentary and exercising mice presented with a normal or high-fat diet. Methods Thirty-six, 6-week old C57BL/6NTac male mice were fed a normal or high-fat diet for 12-weeks and randomly assigned to exercise or sedentary groups. After 12 weeks animals were sacrificed and duodenum/ileum tissues were fixed for immunohistochemistry for occludin, E-cadherin, and cyclooxygenase-2 (COX-2). The bacterial communities were assayed in fecal samples using terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of 16S rRNA gene amplicons. Results Lean sedentary (LS) mice presented normal histologic villi while obese sedentary (OS) mice had similar villi height with more than twice the width of the LS animals. Both lean (LX) and obese exercise (OX) mice duodenum and ileum were histologically normal. COX-2 expression was the greatest in the OS group, followed by LS, LX and OX. The TRFLP and pyrosequencing indicated that members of the Clostridiales order were predominant in all diet groups. Specific phylotypes were observed with exercise, including Faecalibacterium prausnitzi, Clostridium spp., and Allobaculum spp. Conclusion These data suggest that exercise has a strong influence on gut integrity and host microbiome which points to the necessity for more mechanistic studies of the interactions between specific bacteria in the gut and its host.


Environmental Science & Technology | 2015

Identification of Anaerobic Aniline-Degrading Bacteria at a Contaminated Industrial Site

Weimin Sun; Yun Li; Lora R. McGuinness; Shuai Luo; Weilin Huang; Lee J. Kerkhof; E. Erin Mack; Max M. Häggblom; Donna E. Fennell

Anaerobic aniline biodegradation was investigated under different electron-accepting conditions using contaminated canal and groundwater aquifer sediments from an industrial site. Aniline loss was observed in nitrate- and sulfate-amended microcosms and in microcosms established to promote methanogenic conditions. Lag times of 37 days (sulfate amended) to more than 100 days (methanogenic) were observed prior to activity. Time-series DNA-stable isotope probing (SIP) was used to identify bacteria that incorporated (13)C-labeled aniline in the microcosms established to promote methanogenic conditions. In microcosms from heavily contaminated aquifer sediments, a phylotype with 92.7% sequence similarity to Ignavibacterium album was identified as a dominant aniline degrader as indicated by incorporation of (13)C-aniline into its DNA. In microcosms from contaminated canal sediments, a bacterial phylotype within the family Anaerolineaceae, but without a match to any known genus, demonstrated the assimilation of (13)C-aniline. Acidovorax spp. were also identified as putative aniline degraders in both of these two treatments, indicating that these species were present and active in both the canal and aquifer sediments. There were multiple bacterial phylotypes associated with anaerobic degradation of aniline at this complex industrial site, which suggests that anaerobic transformation of aniline is an important process at the site. Furthermore, the aniline degrading phylotypes identified in the current study are not related to any known aniline-degrading bacteria. The identification of novel putative aniline degraders expands current knowledge regarding the potential fate of aniline under anaerobic conditions.


PLOS ONE | 2015

Spatial distribution of an uranium-respiring betaproteobacterium at the Rifle, CO field research site

Nicole M. Koribanics; Steven J. Tuorto; Nora Lopez-Chiaffarelli; Lora R. McGuinness; Max M. Häggblom; Kenneth H. Williams; Philip E. Long; Lee J. Kerkhof

The Department of Energy’s Integrated Field-Scale Subsurface Research Challenge Site (IFRC) at Rifle, Colorado was created to address the gaps in knowledge on the mechanisms and rates of U(VI) bioreduction in alluvial sediments. Previous studies at the Rifle IFRC have linked microbial processes to uranium immobilization during acetate amendment. Several key bacteria believed to be involved in radionuclide containment have been described; however, most of the evidence implicating uranium reduction with specific microbiota has been indirect. Here, we report on the cultivation of a microorganism from the Rifle IFRC that reduces uranium and appears to utilize it as a terminal electron acceptor for respiration with acetate as electron donor. Furthermore, this bacterium constitutes a significant proportion of the subsurface sediment community prior to biostimulation based on TRFLP profiling of 16S rRNA genes. 16S rRNA gene sequence analysis indicates that the microorganism is a betaproteobacterium with a high similarity to Burkholderia fungorum. This is, to our knowledge, the first report of a betaproteobacterium capable of uranium respiration. Our results indicate that this microorganism occurs commonly in alluvial sediments located between 3-6 m below ground surface at Rifle and may play a role in the initial reduction of uranium at the site.


international conference on evolvable systems | 2004

Evaluation of Performance of Five Parallel Biological Water Processors

Leticia Vega; Lee J. Kerkhof; Lora R. McGuinness; Karen D. Pickering

The objective of the work entitled Molecular Characterization of Eubacteria in a Biological Water Processor was to gain an understanding of the microbial diversity and species stability of the consortia that inhabit an anoxic bioreactor and to correlate those factors with functional performance, mechanical reliability, and stability. The evaluation was divided into four studies. During Study 1, replicate biological water processor (BWP) systems were operated to evaluate variability in the microbial diversity over time as a function of the initial consortia used for inoculation of the BWP reactors. Study 2 was designed to investigate the impact of an inoculum source on BWP performance. Study 3 was a modification of Study 2 where the impact of inoculum on BWP performance from inoculation until steady state operations was monitored. In Study 4, the reactors were divided into three different operational periods, based on the operational periods of the integrated water recovery test at the Johnson Space Center (JSC) in 2001.


Environmental Science & Technology | 2016

Identification of a Ruminococcaceae Species as the Methyl tert-Butyl Ether (MTBE) Degrading Bacterium in a Methanogenic Consortium.

Tong Liu; Hyeri Ahn; Weimin Sun; Lora R. McGuinness; Lee J. Kerkhof; Max M. Häggblom

The widespread use of methyl tert-butyl ether (MTBE) has caused major contamination of groundwater sources and is a concern due to its taste and odor problems, as well as its toxicity. MTBE can be degraded anaerobically which makes bioremediation of contaminated aquifers a potential solution. Nevertheless, the organisms and mechanisms that are responsible for anaerobic MTBE degradation are still unknown. The aim of our research was to identify the organisms actively degrading MTBE. For this purpose we characterized an anaerobic methanogenic culture enriched with MTBE as the sole carbon source from the New Jersey Arthur Kill intertidal strait sediment. The cultures were analyzed using stable isotope probing (SIP) combined with terminal restriction fragment length polymorphism (T-RFLP), high-throughput sequencing and clone library analysis of bacterial 16S rRNA genes. The sequence data indicated that phylotypes belonging to the Ruminococcaceae in the Firmicutes were predominant in the methanogenic cultures. SIP experiments also showed sequential incorporation of the (13)C labeled MTBE by the bacterial community with a bacterium most closely related to Saccharofermentans acetigenes identified as the bacterium active in O-demethylation of MTBE. Identification of the microorganisms responsible for the activity will help us better understand anaerobic MTBE degradation processes in the field and determine biomarkers for monitoring natural attenuation.


Journal of Microbiological Methods | 2016

Comparison of a modified phenol/chloroform and commercial-kit methods for extracting DNA from horse fecal material.

Ali H.D. Janabi; Lee J. Kerkhof; Lora R. McGuinness; A.S. Biddle; Kenneth H. McKeever

There are many choices for methods of extracting bacterial DNA for Next Generation Sequencing (NGS) from fecal samples. Here, we compare our modifications of a phenol/chloroform extraction method plus an inhibitor removal solution (C3) (ph/Chl+C3) to the PowerFecal® DNA Isolation Kit (MoBio-K). DNA quality and quantity coupled to NGS results were used to assess differences in relative abundance, Shannon diversity index, unique species, and principle coordinate analysis (PCoA) between biological replicates. Six replicate samples, taken from a single ball of horse feces manually collected from the rectum, were subjected to each extraction method. The Ph/Chl+C3 method produced 100× higher DNA yields with less shearing than the MoBio-K method. To assess the methods, the two method samples were sent for sequencing of the bacterial V3-V4 region of 16S rRNA gene using the Illumina MiSeq platform. The relative abundance of Bacteroidetes was greater and there were more unique species assigned to this group in MoBio-K than in Ph/Chl+C3 (P<0.05). In contrast, Firmicutes had greater relative abundance and more unique species in Ph/Chl+C3 extracts than in MoBio-K (P<0.05). The other major bacterial phyla were equally abundant in samples using both extraction methods. Alpha diversity and Shannon Weaver indices showed greater evenness of bacterial distribution in Ph/Chl+C3 compared with MoBio-K (P<0.05), but there was no difference in the OTU richness. Principle coordinate analysis (PCoA) indicated a distinct separation between the two methods (P<0.05) and tighter clustering (less variability) in Ph/Chl+C3 than in MoBio-K. These results suggest that the Ph/Chl+C3 may be preferred for research to identify specific Firmicutes taxa such as Clostridium, and Bacillus. However; MoBio-K may be a better choice for projects focusing on Bacteroidetes abundance. The Ph/Chl+C3 method required less time, but has some safety concerns associated with exposure and disposal of phenol and chloroform. While the MoBio-K may be better choice for researchers with less access to safety equipment like a fume hood.


PLOS ONE | 2015

Identification of bacteria synthesizing ribosomal RNA in response to uranium addition during biostimulation at the Rifle, CO Integrated Field Research site

Lora R. McGuinness; Michael J. Wilkins; Kenneth H. Williams; Philip E. Long; Lee J. Kerkhof

Understanding which organisms are capable of reducing uranium at historically contaminated sites provides crucial information needed to evaluate treatment options and outcomes. One approach is determination of the bacteria which directly respond to uranium addition. In this study, uranium amendments were made to groundwater samples from a site of ongoing biostimulation with acetate. The active microbes in the planktonic phase were deduced by monitoring ribosomes production via RT-PCR. The results indicated several microorganisms were synthesizing ribosomes in proportion with uranium amendment up to 2 μM. Concentrations of U (VI) >2 μM were generally found to inhibit ribosome synthesis. Two active bacteria responding to uranium addition in the field were close relatives of Desulfobacter postgateii and Geobacter bemidjiensis. Since RNA content often increases with growth rate, our findings suggest it is possible to rapidly elucidate active bacteria responding to the addition of uranium in field samples and provides a more targeted approach to stimulate specific populations to enhance radionuclide reduction in contaminated sites.

Collaboration


Dive into the Lora R. McGuinness's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth H. Williams

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Philip E. Long

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leticia Vega

Jacobs Engineering Group

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge