Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Loredana Santo is active.

Publication


Featured researches published by Loredana Santo.


Blood | 2012

Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma

Loredana Santo; Teru Hideshima; Andrew L. Kung; Jen-Chieh Tseng; David Tamang; Min Yang; Matthew Jarpe; John H. Van Duzer; Ralph Mazitschek; Walter Ogier; Diana Cirstea; Scott J. Rodig; Homare Eda; Tyler A. Scullen; Miriam Canavese; James E. Bradner; Kenneth C. Anderson; Simon S. Jones; Noopur Raje

Histone deacetylase (HDAC) enzymatic activity has been linked to the transcription of DNA in cancers including multiple myeloma (MM). Therefore, HDAC inhibitors used alone and in combination are being actively studied as novel therapies in MM. In the present study, we investigated the preclinical activity of ACY-1215, an HDAC6-selective inhibitor, alone and in combination with bortezomib in MM. Low doses of ACY-1215 combined with bortezomib triggered synergistic anti-MM activity, resulting in protracted endoplasmic reticulum stress and apoptosis via activation of caspase-3, caspase-8, and caspase-9 and poly (ADP) ribosome polymerase. In vivo, the anti-MM activity of ACY-1215 in combination with bortezomib was confirmed using 2 different xenograft SCID mouse models: human MM injected subcutaneously (the plasmacytoma model) and luciferase-expressing human MM injected intravenously (the disseminated MM model). Tumor growth was significantly delayed and overall survival was significantly prolonged in animals treated with the combination therapy. Pharmacokinetic data showed peak plasma levels of ACY-1215 at 4 hours after treatment coincident with an increase in acetylated α-tubulin, a marker of HDAC6 inhibition, by immunohistochemistry and Western blot analysis. These studies provide preclinical rationale for acetylated α-tubulin use as a pharmacodynamic biomarker in future clinical trials.


Journal of Clinical Oncology | 2010

Major Tumor Shrinking and Persistent Molecular Remissions After Consolidation With Bortezomib, Thalidomide, and Dexamethasone in Patients With Autografted Myeloma

Marco Ladetto; Gloria Pagliano; Simone Ferrero; Federica Cavallo; Daniela Drandi; Loredana Santo; Claudia Crippa; Luca De Rosa; Patrizia Pregno; Mariella Grasso; Anna Marina Liberati; Tommaso Caravita; Francesco Pisani; Tommasina Guglielmelli; Vincenzo Callea; Pellegrino Musto; Clotilde Cangialosi; Roberto Passera; Mario Boccadoro; Antonio Palumbo

PURPOSE We investigated the effect on minimal residual disease, by qualitative and real-time quantitative polymerase chain reaction (RQ-PCR), of a consolidation regimen that included bortezomib, thalidomide, and dexamethasone (VTD) in patients with multiple myeloma (MM) responding to autologous stem-cell transplantation (auto-SCT). PATIENTS AND METHODS Patients achieving at least very good partial response who had an available molecular marker based on the immunoglobulin heavy-chain rearrangement received four courses of treatment every month: four infusions per month of bortezomib at 1.6 mg/m(2), thalidomide at 200 mg/d, and dexamethasone at 20 mg/d on days 1 to 4, 8 to 11, and 15 to 18. Patients were studied with tumor-clone-specific primers by qualitative nested PCR and RQ-PCR. Results Of 39 patients enrolled, 31 received the four VTD courses. Immunofixation complete responses increased from 15% after auto-SCT to 49% after VTD. Molecular remissions (MRs) were 3% after auto-SCT and 18% after VTD. Median time to maximum response was 3.5 months. So far, no patient in MR has relapsed (median follow-up, 42 months). VTD consolidation induced an additional depletion of 4.14 natural logarithms of tumor burden by RQ-PCR. Patients with a tumor load less than the median value after VTD had outcomes better than those who had tumor loads above the median value after VTD (at median follow-up: progression-free survival, 100% v 57%; P < .001). CONCLUSION To the best of our knowledge, this study is the first to document the occurrence of persistent MRs in a proportion of MM patients treated without allogeneic transplantation. Moreover, the major reduction in tumor load recorded by RQ-PCR after VTD suggests that unprecedented levels of tumor cell reduction can be achieved in MM thanks to the new nonchemotherapeutic drugs.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease

Sonia Vallet; Siddhartha Mukherjee; Nileshwari Vaghela; Teru Hideshima; Mariateresa Fulciniti; Samantha Pozzi; Loredana Santo; Diana Cirstea; Kishan Patel; Aliyah R. Sohani; Alexander R. Guimaraes; Wanling Xie; Dharminder Chauhan; Jesse Schoonmaker; Eyal C. Attar; Michael Churchill; Edie Weller; Nikhil C. Munshi; Jasbir Seehra; Ralph Weissleder; Kenneth C. Anderson; David T. Scadden; Noopur Raje

Understanding the pathogenesis of cancer-related bone disease is crucial to the discovery of new therapies. Here we identify activin A, a TGF-β family member, as a therapeutically amenable target exploited by multiple myeloma (MM) to alter its microenvironmental niche favoring osteolysis. Increased bone marrow plasma activin A levels were found in MM patients with osteolytic disease. MM cell engagement of marrow stromal cells enhanced activin A secretion via adhesion-mediated JNK activation. Activin A, in turn, inhibited osteoblast differentiation via SMAD2-dependent distal-less homeobox–5 down-regulation. Targeting activin A by a soluble decoy receptor reversed osteoblast inhibition, ameliorated MM bone disease, and inhibited tumor growth in an in vivo humanized MM model, setting the stage for testing in human clinical trials.


Blood | 2012

Blockade of XBP1 splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma

Naoya Mimura; Mariateresa Fulciniti; Gullu Gorgun; Yu-Tzu Tai; Diana Cirstea; Loredana Santo; Yiguo Hu; Claire Fabre; Jiro Minami; Hiroto Ohguchi; Tanyel Kiziltepe; Hiroshi Ikeda; Yutaka Kawano; Maureen French; Martina Blumenthal; Victor Tam; Nathalie L. Kertesz; Uriel M. Malyankar; Mark Hokenson; Tuan Pham; Qingping Zeng; John B. Patterson; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson

Multiple myeloma (MM) cells are characterized by high protein synthesis resulting in chronic endoplasmic reticulum (ER) stress, which is adaptively managed by the unfolded protein response. Inositol-requiring enzyme 1α (IRE1α) is activated to splice X-box binding protein 1 (XBP1) mRNA, thereby increasing XBP1s protein, which in turn regulates genes responsible for protein folding and degradation during the unfolded protein response. In this study, we examined whether IRE1α-XBP1 pathway is a potential therapeutic target in MM using a small-molecule IRE1α endoribonuclease domain inhibitor MKC-3946. MKC-3946 triggered modest growth inhibition in MM cell lines, without toxicity in normal mononuclear cells. Importantly, it significantly enhanced cytotoxicity induced by bortezomib or 17-AAG, even in the presence of bone marrow stromal cells or exogenous IL-6. Both bortezomib and 17-AAG induced ER stress, evidenced by induction of XBP1s, which was blocked by MKC-3946. Apoptosis induced by these agents was enhanced by MKC-3946, associated with increased CHOP. Finally, MKC-3946 inhibited XBP1 splicing in a model of ER stress in vivo, associated with significant growth inhibition of MM cells. Taken together, our results demonstrate that blockade of XBP1 splicing by inhibition of IRE1α endoribonuclease domain is a potential therapeutic option in MM.


Blood | 2011

The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors

Erik A. Nelson; Sarah R. Walker; Ellen Weisberg; Michal Bar-Natan; Rosemary Barrett; Laurie B. Gashin; Shariya Terrell; Josephine L. Klitgaard; Loredana Santo; Martha R. Addorio; Benjamin L. Ebert; James D. Griffin; David A. Frank

The transcription factor STAT5 is an essential mediator of the pathogenesis of chronic myelogenous leukemia (CML). In CML, the BCR/ABL fusion kinase causes the constitutive activation of STAT5, thereby driving the expression of genes promoting survival. BCR/ABL kinase inhibitors have become the mainstay of therapy for CML, although CML cells can develop resistance through mutations in BCR/ABL. To overcome this problem, we used a cell-based screen to identify drugs that inhibit STAT-dependent gene expression. Using this approach, we identified the psychotropic drug pimozide as a STAT5 inhibitor. Pimozide decreases STAT5 tyrosine phosphorylation, although it does not inhibit BCR/ABL or other tyrosine kinases. Furthermore, pimozide decreases the expression of STAT5 target genes and induces cell cycle arrest and apoptosis in CML cell lines. Pimozide also selectively inhibits colony formation of CD34(+) bone marrow cells from CML patients. Importantly, pimozide induces similar effects in the presence of the T315I BCR/ABL mutation that renders the kinase resistant to presently available inhibitors. Simultaneously inhibiting STAT5 with pimozide and the kinase inhibitors imatinib or nilotinib shows enhanced effects in inhibiting STAT5 phosphorylation and in inducing apoptosis. Thus, targeting STAT5 may be an effective strategy for the treatment of CML and other myeloproliferative diseases.


Blood | 2010

A novel Aurora-A kinase inhibitor MLN8237 induces cytotoxicity and cell-cycle arrest in multiple myeloma

Gullu Gorgun; Elisabetta Calabrese; Teru Hideshima; Jeffrey Ecsedy; Giulia Perrone; Mala Mani; Hiroshi Ikeda; Giada Bianchi; Yiguo Hu; Diana Cirstea; Loredana Santo; Yu-Tzu Tai; Sabikun Nahar; Mei Zheng; Madhavi Bandi; Ruben D. Carrasco; Noopur Raje; Nikhil C. Munshi; Paul G. Richardson; Kenneth C. Anderson

Aurora-A is a mitotic kinase that regulates mitotic spindle formation and segregation. In multiple myeloma (MM), high Aurora-A gene expression has been correlated with centrosome amplification and proliferation; thus, inhibition of Aurora-A in MM may prove to be therapeutically beneficial. Here we assess the in vitro and in vivo anti-MM activity of MLN8237, a small-molecule Aurora-A kinase inhibitor. Treatment of cultured MM cells with MLN8237 results in mitotic spindle abnormalities, mitotic accumulation, as well as inhibition of cell proliferation through apoptosis and senescence. In addition, MLN8237 up-regulates p53 and tumor suppressor genes p21 and p27. Combining MLN8237 with dexamethasone, doxorubicin, or bortezomib induces synergistic/additive anti-MM activity in vitro. In vivo anti-MM activity of MLN8237 was confirmed using a xenograft-murine model of human-MM. Tumor burden was significantly reduced (P = .007) and overall survival was significantly increased (P < .005) in animals treated with 30 mg/kg MLN8237 for 21 days. Induction of apoptosis and cell death by MLN8237 were confirmed in tumor cells excised from treated animals by TdT-mediated dUTP nick end labeling assay. MLN8237 is currently in phase 1 and phase 2 clinical trials in patients with advanced malignancies, and our preclinical results suggest that MLN8237 may be a promising novel targeted therapy in MM.


Clinical Cancer Research | 2009

The Monoclonal Antibody nBT062 Conjugated to Cytotoxic Maytansinoids Has Selective Cytotoxicity Against CD138-Positive Multiple Myeloma Cells In vitro and In vivo

Hiroshi Ikeda; Teru Hideshima; Mariateresa Fulciniti; Robert J. Lutz; Hiroshi Yasui; Yutaka Okawa; Tanyel Kiziltepe; Sonia Vallet; Samantha Pozzi; Loredana Santo; Giulia Perrone; Yu-Tzu Tai; Diana Cirstea; Noopur Raje; Christoph Uherek; Benjamin Dälken; Silke Aigner; Frank Osterroth; Nikhil C. Munshi; Paul G. Richardson; Kenneth C. Anderson

Purpose: We investigated the antitumor effect of murine/human chimeric CD138-specific monoclonal antibody nBT062 conjugated with highly cytotoxic maytansinoid derivatives against multiple myeloma (MM) cells in vitro and in vivo. Experimental Design: We examined the growth inhibitory effect of BT062-SPDB-DM4, BT062-SMCC-DM1, and BT062-SPP-DM1 against MM cell lines and primary tumor cells from MM patients. We also examined in vivo activity of these agents in murine MM cell xenograft model of human and severe combined immunodeficient (SCID) mice bearing implant bone chips injected with human MM cells (SCID-hu model). Results: Anti-CD138 immunoconjugates significantly inhibited growth of MM cell lines and primary tumor cells from MM patients without cytotoxicity against peripheral blood mononuclear cells from healthy volunteers. In MM cells, they induced G2-M cell cycle arrest, followed by apoptosis associated with cleavage of caspase-3, caspase-8, caspase-9, and poly(ADP-ribose) polymerase. Nonconjugated nBT062 completely blocked cytotoxicity induced by nBT062-maytansinoid conjugate, confirming that specific binding is required for inducing cytotoxicity. Moreover, nBT062-maytansinoid conjugates blocked adhesion of MM cells to bone marrow stromal cells. The coculture of MM cells with bone marrow stromal cells protects against dexamethasone-induced death but had no effect on the cytotoxicity of immunoconjugates. Importantly, nBT062-SPDB-DM4 and nBT062-SPP-DM1 significantly inhibited MM tumor growth in vivo and prolonged host survival in both the xenograft mouse models of human MM and SCID-hu mouse model. Conclusion: These results provide the preclinical framework supporting evaluation of nBT062-maytansinoid derivatives in clinical trials to improve patient outcome in MM.


Blood | 2010

Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma

Gullu Gorgun; Elisabetta Calabrese; Ender Soydan; Teru Hideshima; Giulia Perrone; Madhavi Bandi; Diana Cirstea; Loredana Santo; Yiguo Hu; Yu-Tzu Tai; Sabikun Nahar; Naoya Mimura; Claire Fabre; Noopur Raje; Nikhil C. Munshi; Paul G. Richardson; Kenneth C. Anderson

The bone marrow (BM) microenvironment consists of extracellular-matrix and the cellular compartment including immune cells. Multiple myeloma (MM) cell and BM accessory cell interaction promotes MM survival via both cell-cell contact and cytokines. Immunomodulatory agents (IMiDs) target not only MM cells, but also MM cell-immune cell interactions and cytokine signaling. Here we examined the in vitro effects of IMiDs on cytokine signaling triggered by interaction of effector cells with MM cells and BM stroma cells. IMiDs diminished interleukin-2, interferonγ, and IL-6 regulator suppressor of cytokine signaling (SOCS)1 expression in immune (CD4T, CD8T, natural-killer T, natural-killer) cells from both BM and PB of MM patients. In addition, coculture of MM cells with healthy PBMCs induced SOCS1 expression in effector cells; conversely, treatment with IMiDs down-regulated the SOCS1 expression. SOCS1 negatively regulates IL-6 signaling and is silenced by hypermethylation in MM cells. To define the mechanism of inhibitory-cytokine signaling in effector cells and MM cells, we next analyzed the interaction of immune cells with MM cells that were epigenetically modified to re-express SOCS1; IMiDs induced more potent CTL responses against SOCS1 re-expressing-MM cells than unmodified MM cells. These data therefore demonstrate that modulation of SOCS1 may enhance immune response and efficacy of IMiDs in MM.


Molecular Cancer Therapeutics | 2010

Dual inhibition of akt/mammalian target of rapamycin pathway by nanoparticle albumin-bound-rapamycin and perifosine induces antitumor activity in multiple myeloma.

Diana Cirstea; Teru Hideshima; Scott J. Rodig; Loredana Santo; Samantha Pozzi; Sonia Vallet; Hiroshi Ikeda; Giulia Perrone; Gullu Gorgun; Kishan Patel; Neil Desai; Peter Sportelli; Shweta Kapoor; Shireen Vali; Siddhartha Mukherjee; Nikhil C. Munshi; Kenneth C. Anderson; Noopur Raje

The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway mediates multiple myeloma (MM) cell proliferation, survival, and development of drug resistance, underscoring the role of mTOR inhibitors, such as rapamycin, with potential anti-MM activity. However, recent data show a positive feedback loop from mTOR/S6K1 to Akt, whereby Akt activation confers resistance to mTOR inhibitors. We confirmed that suppression of mTOR signaling in MM cells by rapamycin was associated with upregulation of Akt phosphorylation. We hypothesized that inhibiting this positive feedback by a potent Akt inhibitor perifosine would augment rapamycin-induced cytotoxicity in MM cells. Perifosine inhibited rapamycin-induced phosphorylated Akt, resulting in enhanced cytotoxicity in MM.1S cells even in the presence of interleukin-6, insulin-like growth factor-I, or bone marrow stromal cells. Moreover, rapamycin-induced autophagy in MM.1S MM cells, as evidenced by electron microscopy and immunocytochemistry, was augmented by perifosine. Combination therapy increased apoptosis detected by Annexin V/propidium iodide analysis and caspase/poly(ADP-ribose) polymerase cleavage. Importantly, in vivo antitumor activity and prolongation of survival in a MM mouse xenograft model after treatment was enhanced with combination of nanoparticle albumin-bound–rapamycin and perifosine. Utilizing the in silico predictive analysis, we confirmed our experimental findings of this drug combination on PI3K, Akt, mTOR kinases, and the caspases. Our data suggest that mutual suppression of the PI3K/Akt/mTOR pathway by rapamycin and perifosine combination induces synergistic MM cell cytotoxicity, providing the rationale for clinical trials in patients with relapsed/refractory MM. Mol Cancer Ther; 9(4); 963–75. ©2010 AACR.


Blood | 2010

PI3K/p110{delta} is a novel therapeutic target in multiple myeloma.

Hiroshi Ikeda; Teru Hideshima; Mariateresa Fulciniti; Giulia Perrone; Naoya Miura; Hiroshi Yasui; Yutaka Okawa; Tanyel Kiziltepe; Loredana Santo; Sonia Vallet; Diana Cristea; Elisabetta Calabrese; Gullu Gorgun; Noopur Raje; Paul G. Richardson; Nikhil C. Munshi; Brian Lannutti; Kamal D. Puri; Neill A. Giese; Kenneth C. Anderson

In this study, we demonstrate expression and examined the biologic sequelae of PI3K/p110delta signaling in multiple myeloma (MM). Knockdown of p110delta by small interfering RNA caused significant inhibition of MM cell growth. Similarly, p110delta specific small molecule inhibitor CAL-101 triggered cytotoxicity against LB and INA-6 MM cell lines and patient MM cells, associated with inhibition of Akt phosphorylation. In contrast, CAL-101 did not inhibit survival of normal peripheral blood mononuclear cells. CAL-101 overcame MM cell growth conferred by interleukin-6, insulin-like growth factor-1, and bone marrow stromal cell coculture. Interestingly, inhibition of p110delta potently induced autophagy. The in vivo inhibition of p110delta with IC488743 was evaluated in 2 murine xenograft models of human MM: SCID mice bearing human MM cells subcutaneously and the SCID-hu model, in which human MM cells are injected within a human bone chip implanted subcutaneously in SCID mice. IC488743 significantly inhibited tumor growth and prolonged host survival in both models. Finally, combined CAL-101 with bortezomib induced synergistic cytotoxicity against MM cells. Our studies therefore show that PI3K/p110delta is a novel therapeutic target in MM and provide the basis for clinical evaluation of CAL-101 to improve patient outcome in MM.

Collaboration


Dive into the Loredana Santo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samantha Pozzi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Ikeda

Sapporo Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge