Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diana Cirstea is active.

Publication


Featured researches published by Diana Cirstea.


Blood | 2012

Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma

Loredana Santo; Teru Hideshima; Andrew L. Kung; Jen-Chieh Tseng; David Tamang; Min Yang; Matthew Jarpe; John H. Van Duzer; Ralph Mazitschek; Walter Ogier; Diana Cirstea; Scott J. Rodig; Homare Eda; Tyler A. Scullen; Miriam Canavese; James E. Bradner; Kenneth C. Anderson; Simon S. Jones; Noopur Raje

Histone deacetylase (HDAC) enzymatic activity has been linked to the transcription of DNA in cancers including multiple myeloma (MM). Therefore, HDAC inhibitors used alone and in combination are being actively studied as novel therapies in MM. In the present study, we investigated the preclinical activity of ACY-1215, an HDAC6-selective inhibitor, alone and in combination with bortezomib in MM. Low doses of ACY-1215 combined with bortezomib triggered synergistic anti-MM activity, resulting in protracted endoplasmic reticulum stress and apoptosis via activation of caspase-3, caspase-8, and caspase-9 and poly (ADP) ribosome polymerase. In vivo, the anti-MM activity of ACY-1215 in combination with bortezomib was confirmed using 2 different xenograft SCID mouse models: human MM injected subcutaneously (the plasmacytoma model) and luciferase-expressing human MM injected intravenously (the disseminated MM model). Tumor growth was significantly delayed and overall survival was significantly prolonged in animals treated with the combination therapy. Pharmacokinetic data showed peak plasma levels of ACY-1215 at 4 hours after treatment coincident with an increase in acetylated α-tubulin, a marker of HDAC6 inhibition, by immunohistochemistry and Western blot analysis. These studies provide preclinical rationale for acetylated α-tubulin use as a pharmacodynamic biomarker in future clinical trials.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease

Sonia Vallet; Siddhartha Mukherjee; Nileshwari Vaghela; Teru Hideshima; Mariateresa Fulciniti; Samantha Pozzi; Loredana Santo; Diana Cirstea; Kishan Patel; Aliyah R. Sohani; Alexander R. Guimaraes; Wanling Xie; Dharminder Chauhan; Jesse Schoonmaker; Eyal C. Attar; Michael Churchill; Edie Weller; Nikhil C. Munshi; Jasbir Seehra; Ralph Weissleder; Kenneth C. Anderson; David T. Scadden; Noopur Raje

Understanding the pathogenesis of cancer-related bone disease is crucial to the discovery of new therapies. Here we identify activin A, a TGF-β family member, as a therapeutically amenable target exploited by multiple myeloma (MM) to alter its microenvironmental niche favoring osteolysis. Increased bone marrow plasma activin A levels were found in MM patients with osteolytic disease. MM cell engagement of marrow stromal cells enhanced activin A secretion via adhesion-mediated JNK activation. Activin A, in turn, inhibited osteoblast differentiation via SMAD2-dependent distal-less homeobox–5 down-regulation. Targeting activin A by a soluble decoy receptor reversed osteoblast inhibition, ameliorated MM bone disease, and inhibited tumor growth in an in vivo humanized MM model, setting the stage for testing in human clinical trials.


Blood | 2012

Blockade of XBP1 splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma

Naoya Mimura; Mariateresa Fulciniti; Gullu Gorgun; Yu-Tzu Tai; Diana Cirstea; Loredana Santo; Yiguo Hu; Claire Fabre; Jiro Minami; Hiroto Ohguchi; Tanyel Kiziltepe; Hiroshi Ikeda; Yutaka Kawano; Maureen French; Martina Blumenthal; Victor Tam; Nathalie L. Kertesz; Uriel M. Malyankar; Mark Hokenson; Tuan Pham; Qingping Zeng; John B. Patterson; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson

Multiple myeloma (MM) cells are characterized by high protein synthesis resulting in chronic endoplasmic reticulum (ER) stress, which is adaptively managed by the unfolded protein response. Inositol-requiring enzyme 1α (IRE1α) is activated to splice X-box binding protein 1 (XBP1) mRNA, thereby increasing XBP1s protein, which in turn regulates genes responsible for protein folding and degradation during the unfolded protein response. In this study, we examined whether IRE1α-XBP1 pathway is a potential therapeutic target in MM using a small-molecule IRE1α endoribonuclease domain inhibitor MKC-3946. MKC-3946 triggered modest growth inhibition in MM cell lines, without toxicity in normal mononuclear cells. Importantly, it significantly enhanced cytotoxicity induced by bortezomib or 17-AAG, even in the presence of bone marrow stromal cells or exogenous IL-6. Both bortezomib and 17-AAG induced ER stress, evidenced by induction of XBP1s, which was blocked by MKC-3946. Apoptosis induced by these agents was enhanced by MKC-3946, associated with increased CHOP. Finally, MKC-3946 inhibited XBP1 splicing in a model of ER stress in vivo, associated with significant growth inhibition of MM cells. Taken together, our results demonstrate that blockade of XBP1 splicing by inhibition of IRE1α endoribonuclease domain is a potential therapeutic option in MM.


Blood | 2010

A novel Aurora-A kinase inhibitor MLN8237 induces cytotoxicity and cell-cycle arrest in multiple myeloma

Gullu Gorgun; Elisabetta Calabrese; Teru Hideshima; Jeffrey Ecsedy; Giulia Perrone; Mala Mani; Hiroshi Ikeda; Giada Bianchi; Yiguo Hu; Diana Cirstea; Loredana Santo; Yu-Tzu Tai; Sabikun Nahar; Mei Zheng; Madhavi Bandi; Ruben D. Carrasco; Noopur Raje; Nikhil C. Munshi; Paul G. Richardson; Kenneth C. Anderson

Aurora-A is a mitotic kinase that regulates mitotic spindle formation and segregation. In multiple myeloma (MM), high Aurora-A gene expression has been correlated with centrosome amplification and proliferation; thus, inhibition of Aurora-A in MM may prove to be therapeutically beneficial. Here we assess the in vitro and in vivo anti-MM activity of MLN8237, a small-molecule Aurora-A kinase inhibitor. Treatment of cultured MM cells with MLN8237 results in mitotic spindle abnormalities, mitotic accumulation, as well as inhibition of cell proliferation through apoptosis and senescence. In addition, MLN8237 up-regulates p53 and tumor suppressor genes p21 and p27. Combining MLN8237 with dexamethasone, doxorubicin, or bortezomib induces synergistic/additive anti-MM activity in vitro. In vivo anti-MM activity of MLN8237 was confirmed using a xenograft-murine model of human-MM. Tumor burden was significantly reduced (P = .007) and overall survival was significantly increased (P < .005) in animals treated with 30 mg/kg MLN8237 for 21 days. Induction of apoptosis and cell death by MLN8237 were confirmed in tumor cells excised from treated animals by TdT-mediated dUTP nick end labeling assay. MLN8237 is currently in phase 1 and phase 2 clinical trials in patients with advanced malignancies, and our preclinical results suggest that MLN8237 may be a promising novel targeted therapy in MM.


Clinical Cancer Research | 2009

The Monoclonal Antibody nBT062 Conjugated to Cytotoxic Maytansinoids Has Selective Cytotoxicity Against CD138-Positive Multiple Myeloma Cells In vitro and In vivo

Hiroshi Ikeda; Teru Hideshima; Mariateresa Fulciniti; Robert J. Lutz; Hiroshi Yasui; Yutaka Okawa; Tanyel Kiziltepe; Sonia Vallet; Samantha Pozzi; Loredana Santo; Giulia Perrone; Yu-Tzu Tai; Diana Cirstea; Noopur Raje; Christoph Uherek; Benjamin Dälken; Silke Aigner; Frank Osterroth; Nikhil C. Munshi; Paul G. Richardson; Kenneth C. Anderson

Purpose: We investigated the antitumor effect of murine/human chimeric CD138-specific monoclonal antibody nBT062 conjugated with highly cytotoxic maytansinoid derivatives against multiple myeloma (MM) cells in vitro and in vivo. Experimental Design: We examined the growth inhibitory effect of BT062-SPDB-DM4, BT062-SMCC-DM1, and BT062-SPP-DM1 against MM cell lines and primary tumor cells from MM patients. We also examined in vivo activity of these agents in murine MM cell xenograft model of human and severe combined immunodeficient (SCID) mice bearing implant bone chips injected with human MM cells (SCID-hu model). Results: Anti-CD138 immunoconjugates significantly inhibited growth of MM cell lines and primary tumor cells from MM patients without cytotoxicity against peripheral blood mononuclear cells from healthy volunteers. In MM cells, they induced G2-M cell cycle arrest, followed by apoptosis associated with cleavage of caspase-3, caspase-8, caspase-9, and poly(ADP-ribose) polymerase. Nonconjugated nBT062 completely blocked cytotoxicity induced by nBT062-maytansinoid conjugate, confirming that specific binding is required for inducing cytotoxicity. Moreover, nBT062-maytansinoid conjugates blocked adhesion of MM cells to bone marrow stromal cells. The coculture of MM cells with bone marrow stromal cells protects against dexamethasone-induced death but had no effect on the cytotoxicity of immunoconjugates. Importantly, nBT062-SPDB-DM4 and nBT062-SPP-DM1 significantly inhibited MM tumor growth in vivo and prolonged host survival in both the xenograft mouse models of human MM and SCID-hu mouse model. Conclusion: These results provide the preclinical framework supporting evaluation of nBT062-maytansinoid derivatives in clinical trials to improve patient outcome in MM.


Blood | 2010

Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma

Gullu Gorgun; Elisabetta Calabrese; Ender Soydan; Teru Hideshima; Giulia Perrone; Madhavi Bandi; Diana Cirstea; Loredana Santo; Yiguo Hu; Yu-Tzu Tai; Sabikun Nahar; Naoya Mimura; Claire Fabre; Noopur Raje; Nikhil C. Munshi; Paul G. Richardson; Kenneth C. Anderson

The bone marrow (BM) microenvironment consists of extracellular-matrix and the cellular compartment including immune cells. Multiple myeloma (MM) cell and BM accessory cell interaction promotes MM survival via both cell-cell contact and cytokines. Immunomodulatory agents (IMiDs) target not only MM cells, but also MM cell-immune cell interactions and cytokine signaling. Here we examined the in vitro effects of IMiDs on cytokine signaling triggered by interaction of effector cells with MM cells and BM stroma cells. IMiDs diminished interleukin-2, interferonγ, and IL-6 regulator suppressor of cytokine signaling (SOCS)1 expression in immune (CD4T, CD8T, natural-killer T, natural-killer) cells from both BM and PB of MM patients. In addition, coculture of MM cells with healthy PBMCs induced SOCS1 expression in effector cells; conversely, treatment with IMiDs down-regulated the SOCS1 expression. SOCS1 negatively regulates IL-6 signaling and is silenced by hypermethylation in MM cells. To define the mechanism of inhibitory-cytokine signaling in effector cells and MM cells, we next analyzed the interaction of immune cells with MM cells that were epigenetically modified to re-express SOCS1; IMiDs induced more potent CTL responses against SOCS1 re-expressing-MM cells than unmodified MM cells. These data therefore demonstrate that modulation of SOCS1 may enhance immune response and efficacy of IMiDs in MM.


Molecular Cancer Therapeutics | 2010

Dual inhibition of akt/mammalian target of rapamycin pathway by nanoparticle albumin-bound-rapamycin and perifosine induces antitumor activity in multiple myeloma.

Diana Cirstea; Teru Hideshima; Scott J. Rodig; Loredana Santo; Samantha Pozzi; Sonia Vallet; Hiroshi Ikeda; Giulia Perrone; Gullu Gorgun; Kishan Patel; Neil Desai; Peter Sportelli; Shweta Kapoor; Shireen Vali; Siddhartha Mukherjee; Nikhil C. Munshi; Kenneth C. Anderson; Noopur Raje

The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway mediates multiple myeloma (MM) cell proliferation, survival, and development of drug resistance, underscoring the role of mTOR inhibitors, such as rapamycin, with potential anti-MM activity. However, recent data show a positive feedback loop from mTOR/S6K1 to Akt, whereby Akt activation confers resistance to mTOR inhibitors. We confirmed that suppression of mTOR signaling in MM cells by rapamycin was associated with upregulation of Akt phosphorylation. We hypothesized that inhibiting this positive feedback by a potent Akt inhibitor perifosine would augment rapamycin-induced cytotoxicity in MM cells. Perifosine inhibited rapamycin-induced phosphorylated Akt, resulting in enhanced cytotoxicity in MM.1S cells even in the presence of interleukin-6, insulin-like growth factor-I, or bone marrow stromal cells. Moreover, rapamycin-induced autophagy in MM.1S MM cells, as evidenced by electron microscopy and immunocytochemistry, was augmented by perifosine. Combination therapy increased apoptosis detected by Annexin V/propidium iodide analysis and caspase/poly(ADP-ribose) polymerase cleavage. Importantly, in vivo antitumor activity and prolongation of survival in a MM mouse xenograft model after treatment was enhanced with combination of nanoparticle albumin-bound–rapamycin and perifosine. Utilizing the in silico predictive analysis, we confirmed our experimental findings of this drug combination on PI3K, Akt, mTOR kinases, and the caspases. Our data suggest that mutual suppression of the PI3K/Akt/mTOR pathway by rapamycin and perifosine combination induces synergistic MM cell cytotoxicity, providing the rationale for clinical trials in patients with relapsed/refractory MM. Mol Cancer Ther; 9(4); 963–75. ©2010 AACR.


Leukemia | 2011

A Novel Role for CCL3 (MIP-1α) in Myeloma-induced Bone Disease via Osteocalcin Downregulation and Inhibition of Osteoblast Function

Sonia Vallet; Samantha Pozzi; Kishan Patel; Nileshwari Vaghela; Mariateresa Fulciniti; Petter Veiby; Teru Hideshima; Loredana Santo; Diana Cirstea; David T. Scadden; Kenneth C. Anderson; Noopur Raje

Upregulation of cytokines and chemokines is a frequent finding in multiple myeloma (MM). CCL3 (also known as MIP-1α) is a pro-inflammatory chemokine, levels of which in the MM microenvironment correlate with osteolytic lesions and tumor burden. CCL3 and its receptors, CCR1 and CCR5, contribute to the development of bone disease in MM by supporting tumor growth and regulating osteoclast (OC) differentiation. In this study, we identify inhibition of osteoblast (OB) function as an additional pathogenic mechanism in CCL3-induced bone disease. MM-derived and exogenous CCL3 represses mineralization and osteocalcin production by primary human bone marrow stromal cells and HS27A cells. Our results suggest that CCL3 effects on OBs are mediated by ERK activation and subsequent downregulation of the osteogenic transcription factor osterix. CCR1 inhibition reduced ERK phosphorylation and restored both osterix and osteocalcin expression in the presence of CCL3. Finally, treating SCID-hu mice with a small molecule CCR1 inhibitor suggests an upregulation of osteocalcin expression along with OC downregulation. Our results show that CCL3, in addition to its known catabolic activity, reduces bone formation by inhibiting OB function, and therefore contributes to OB/OC uncoupling in MM.


Leukemia | 2009

Ascorbic acid inhibits antitumor activity of bortezomib in vivo

Giulia Perrone; Teru Hideshima; Hiroshi Ikeda; Yutaka Okawa; Elisabetta Calabrese; Gullu Gorgun; Loredana Santo; Diana Cirstea; Noopur Raje; D Chauhan; Michele Baccarani; Michele Cavo; Kenneth C. Anderson

Earlier studies have shown that ascorbic acid (vitamin C) inhibits bortezomib-induced cytotoxicity against cancer cells in vitro. However, the clinical significance of vitamin C on bortezomib treatment is unclear. In this study, we examined whether daily oral intake of vitamin C inhibits antimultiple myeloma (MM) activities of bortezomib. Vitamin C, at orally achievable concentrations, inhibited in vitro MM cell cytotoxicity of bortezomib and blocked its inhibitory effect on 20S proteasome activity. Specifically, plasma collected from healthy volunteers taking 1 g/day vitamin C reduced bortezomib-induced MM cell death in vitro. This antagonistic effect of vitamin C against proteasome inhibitors is limited to the boronate class of inhibitors (bortezomib and MG262). In vivo activity of this combination treatment was then evaluated using our xenograft model of human MM in SCID (severe combined immune-deficient) mice. Bortezomib (0.1 mg/kg twice a week for 4 weeks) significantly inhibits in vivo MM cell growth, which was blocked by oral vitamin C (40 mg/kg/day). Therefore, our results for the first time show that vitamin C can significantly reduce the activity of bortezomib treatment in vivo; and importantly, suggest that patients receiving treatment with bortezomib should avoid taking vitamin C dietary supplements.


Oncogene | 2010

AT7519, A novel small molecule multi-cyclin-dependent kinase inhibitor, induces apoptosis in multiple myeloma via GSK-3β activation and RNA polymerase II inhibition

Loredana Santo; Sonia Vallet; Teru Hideshima; Diana Cirstea; Hiroshi Ikeda; Samantha Pozzi; Kishan Patel; Yutaka Okawa; Gullu Gorgun; Giulia Perrone; Elisabetta Calabrese; Murray Yule; Matt Squires; Marco Ladetto; Mario Boccadoro; Paul G. Richardson; Nikhil C. Munshi; Kenneth C. Anderson; Noopur Raje

Dysregulated cell cycling is a universal hallmark of cancer and is often mediated by abnormal activation of cyclin-dependent kinases (CDKs) and their cyclin partners. Overexpression of individual complexes are reported in multiple myeloma (MM), making them attractive therapeutic targets. In this study, we investigate the preclinical activity of a novel small-molecule multi-CDK inhibitor, AT7519, in MM. We show the anti-MM activity of AT7519 displaying potent cytotoxicity and apoptosis; associated with in vivo tumor growth inhibition and prolonged survival. At the molecular level, AT7519 inhibited RNA polymerase II (RNA pol II) phosphorylation, a CDK9, 7 substrate, associated with decreased RNA synthesis confirmed by [3H] Uridine incorporation. In addition, AT7519 inhibited glycogen synthase kinase 3β (GSK-3β) phosphorylation; conversely pretreatment with a selective GSK-3 inhibitor and shRNA GSK-3β knockdown restored MM survival, suggesting the involvement of GSK-3β in AT7519-induced apoptosis. GSK-3β activation was independent of RNA pol II dephosphorylation confirmed by α-amanitin, a specific RNA pol II inihibitor, showing potent inhibition of RNA pol II phosphorylation without corresponding effects on GSK-3β phosphorylation. These results offer new insights into the crucial, yet controversial role of GSK-3β in MM and show significant anti-MM activity of AT7519, providing the rationale for its clinical evaluation in MM.

Collaboration


Dive into the Diana Cirstea's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samantha Pozzi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge