Loren Shure
Woods Hole Oceanographic Institution
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Loren Shure.
Marine Geophysical Researches | 1987
Jean-Christophe Sempere; Ken C. Macdonald; Stephen P. Miller; Loren Shure
We have conducted the first detailed survey of the recording of a geomagnetic reversal at an ultra-fast spreading center. The survey straddles the Brunhes/Matuyama reversal boundary at 19°30′ S on the east flank of the East Pacific Rise (EPR), which spreads at the half rate of 82 mm yr-1. In the vicinity of the reversal boundary, we performed a three-dimensional inversion of the surface magnetic field and two-dimensional inversions of several near-bottom profiles including the effects of bathymetry. The surface inversion solution shows that the polarity transition is sharp and linear, and less than 3–4 km wide. These values constitute an upper bound because the interpretation of marine magnetic anomalies observed at the sea surface is limited to wavelengths greater than 3–4 km. The polarity transition width, which represents the distance over which 90% of the change in polarity occurs, is narrow (1.5–2.1 km) as measured on individual 2-D inversion profiles of near-bottom data. This suggests a crustal zone of accretion only 3.0–4.2 km wide. Our method offers little control on accretionary processes below layer 2B because the pillow and the dike layers in young oceanic crust are by far the most significant contributors to the generation of marine magnetic anomalies. The Deep-Tow instrument package was used to determine in situ the polarity of individual volcanoes and fault scarps in the same area. We were able to make 96 in situ polarity determinations which allowed us to locate the scafloor transition boundary which separates positively and negatively magnetized lava flows. The shift between the inversion transition boundary and the seafloor transition boundary can be used to obtain an estimate of the width of the neovolcanic zone of 4–10 km. This width is significantly larger than the present width of the neovolcanic zone at 19°30′ S as documented from near-bottom bathymetric and photographic data (Bicknell et al., 1987), and also larger than the width of the neovolcanic zone at 21° N on the EPR as inferred by the three-dimensional inversion of near-bottom magnetic data (Macdonald et al., 1983). The eruption of positively magnetized lava flows over negatively magnetized crust from the numerous volcanoes present in the survey area and episodic flooding of the flanks of the ridge axis by extensive outpourings of lava erupting from a particularly robust magma chamber may result in a widened neovolcanic zone. We studied the relationship between spreading rate and polarity transition widths obtained from 2-D inversions of the near-bottom magnetic field over various spreading centers. The mean transition width corrected for the time necessary for the reversal to occur decreases with increasing spreading rate but our data set is still too sparse to draw firm conclusions from these observations. Perhaps more interesting is the fact that the range of the measured transition widths also decreases with spreading rate. In the light of these results, we propose a new model for the spreading rate dependency of polarity transition widths. At slow spreading centers, the zone of dike injection is narrow but the locus of crustal accretion is prone to small lateral shifts depending on the availability of magmatic sources, and the resulting polarity transition widths can be narrow or wide. At intermediate spreading centers, the zone of crustal accretion is narrow and does not shift laterally, which leads to narrower transition widths on the average than at slow spreading centers. An intermediate, or even a slow spreading center, may behave like a fast or hot-spot dominated ridge for short periods of time when its magmatic budget is increased due to melting events in the upper mantle. At fast spreading centers, the zone of dike injection is narrow, but the large magmatic budget of fast spreading centers may result in occasional extensive flows less than a few tens of meters thick from the axis and off-axis volcanic cones. These thin flows will not significantly contribute to the polarity transition widths, which remain narrow, but they may greatly increase the width of the neovolcanic zone. Finally the gabbro layer in the lower section of oceanic crust may also contribute to the observed polarity transition widths but this contribution will only become significant in older oceanic crust (≈50–100 m.y.).
Physics of the Earth and Planetary Interiors | 1983
Loren Shure; Kathy Whaler; David Gubbins; Bruce Hobbs
Abstract Slow changes in the magnetic field are believed to originate in the core of the Earth. Interpretation of these changes requires knowledge both of the vertical component of the field and of its rate of change at the core-mantle boundary (CMB). While various spherical harmonic models show some agreement for the field at the CMB, those for secular variation (SV) do not. SV models depend heavily on annual means at relatively few and poorly distributed magnetic observatories. In this paper, the SV at the CMB is modelled by fitting 15-year differences in the annual means of the X, Y and Z components (from 1959 to 1974). The model is made unique by imposing the constraint that ⨍ CMB B r 2 d S be a minimum, using the method of Shure et al. (1982). If SV is attributed to motions of core fluid, then this model will yield, in some sense, the slowest core motions. The null space is determined by the distribution of observations, and therefore, to be consistent, only those observatories have been retained which recorded almost continuously throughout the interval 1959–1974. The method allows misfit between the model and the observations. The best value for the misfit can be derived from estimates of errors in the data, or alternatively, because larger misfit leads to smoother models (i.e., smaller ⨍ B r 2 d S ), the best value can be estimated subjectively from the final appearance of the model. Both procedures have their counterparts in the conventional spherical harmonic expansion approach, when smoothing is achieved by lowering the truncation level. The new proposal made in this paper is to use objective criteria for determining the misfit, based on the assumption that diffusion is negligible, in which event all integrals ∫ B r 2 d S will vanish when Si is a region on the CMB bounded by a contour of zero vertical component of field. For the 1965 definitive model which is adopted here, and for most other contemporary models, there are six such areas, giving five independent integrals (the integrals over the six regions must sum to zero if ▿ · B = 0). Tabulating these integrals for various choices of the misfit gives minimum values near 2 nT y−1. It is impossible to achieve this good a fit to the data using a reasonable model derived by truncating the spherical harmonic expansion. The value 2 nT y−1 corresponds to errors of ∼ 20 nT in individual annual means, which is rather larger than expected from the scatter in the data.
Journal of Geophysical Research | 1986
Marcia McNutt; Loren Shure
Reviews of Geophysics | 1987
Robert L. Parker; Loren Shure; John A. Hildebrand
Journal of Geophysical Research | 1983
Ken C. Macdonald; Stephen P. Miller; Bruce P. Luyendyk; Tanya Atwater; Loren Shure
Geophysical Research Letters | 1982
Robert L. Parker; Loren Shure
Journal of Geophysical Research | 1985
Loren Shure; Robert L. Parker; R. A. Langel
Journal of Geophysical Research | 1981
Loren Shure; Robert L. Parker
Journal of Geophysical Research | 1985
Carl Bowin; Geoffrey A. Abers; Loren Shure
Journal of Geophysical Research | 1984
Loren Shure; Alan D. Chave