Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lorenz Studer is active.

Publication


Featured researches published by Lorenz Studer.


Nature Biotechnology | 2009

Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling

Stuart M. Chambers; Christopher A. Fasano; Eirini P. Papapetrou; Mark J. Tomishima; Michel Sadelain; Lorenz Studer

Current neural induction protocols for human embryonic stem (hES) cells rely on embryoid body formation, stromal feeder co-culture or selective survival conditions. Each strategy has considerable drawbacks, such as poorly defined culture conditions, protracted differentiation and low yield. Here we report that the synergistic action of two inhibitors of SMAD signaling, Noggin and SB431542, is sufficient to induce rapid and complete neural conversion of >80% of hES cells under adherent culture conditions. Temporal fate analysis reveals the appearance of a transient FGF5+ epiblast-like stage followed by PAX6+ neural cells competent to form rosettes. Initial cell density determines the ratio of central nervous system and neural crest progeny. Directed differentiation of human induced pluripotent stem (hiPS) cells into midbrain dopamine and spinal motoneurons confirms the robustness and general applicability of the induction protocol. Noggin/SB431542-based neural induction should facilitate the use of hES and hiPS cells in regenerative medicine and disease modeling and obviate the need for protocols based on stromal feeders or embryoid bodies.


Nature Biotechnology | 2000

Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells.

Sang-Hun Lee; Nadya Lumelsky; Lorenz Studer; Jonathan M. Auerbach; Ron McKay

Embryonic stem (ES) cells are clonal cell lines derived from the inner cell mass of the developing blastocyst that can proliferate extensively in vitro and are capable of adopting all the cell fates in a developing embryo. Clinical interest in the use of ES cells has been stimulated by studies showing that isolated human cells with ES properties from the inner cell mass or developing germ cells can provide a source of somatic precursors. Previous studies have defined in vitro conditions for promoting the development of specific somatic fates, specifically, hematopoietic, mesodermal, and neurectodermal. In this study, we present a method for obtaining dopaminergic (DA) and serotonergic neurons in high yield from mouse ES cells in vitro. Furthermore, we demonstrate that the ES cells can be obtained in unlimited numbers and that these neuron types are generated efficiently. We generated CNS progenitor populations from ES cells, expanded these cells and promoted their differentation into dopaminergic and serotonergic neurons in the presence of mitogen and specific signaling molecules. The differentation and maturation of neuronal cells was completed after mitogen withdrawal from the growth medium. This experimental system provides a powerful tool for analyzing the molecular mechanisms controlling the functions of these neurons in vitro and in vivo, and potentially for understanding and treating neurodegenerative and psychiatric diseases.


Nature | 2011

Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease

Sonja Kriks; Jae-won Shim; Jinghua Piao; Yosif Ganat; Dustin R. Wakeman; Zhi-Zhong Xie; Luis Carrillo-Reid; Gordon Auyeung; Chris Antonacci; Amanda Marie Buch; Lichuan Yang; M. Flint Beal; D. James Surmeier; Jeffrey H. Kordower; Viviane Tabar; Lorenz Studer

Human pluripotent stem cells (PSCs) are a promising source of cells for applications in regenerative medicine. Directed differentiation of PSCs into specialized cells such as spinal motoneurons or midbrain dopamine (DA) neurons has been achieved. However, the effective use of PSCs for cell therapy has lagged behind. Whereas mouse PSC-derived DA neurons have shown efficacy in models of Parkinsons disease, DA neurons from human PSCs generally show poor in vivo performance. There are also considerable safety concerns for PSCs related to their potential for teratoma formation or neural overgrowth. Here we present a novel floor-plate-based strategy for the derivation of human DA neurons that efficiently engraft in vivo, suggesting that past failures were due to incomplete specification rather than a specific vulnerability of the cells. Midbrain floor-plate precursors are derived from PSCs 11 days after exposure to small molecule activators of sonic hedgehog (SHH) and canonical WNT signalling. Engraftable midbrain DA neurons are obtained by day 25 and can be maintained in vitro for several months. Extensive molecular profiling, biochemical and electrophysiological data define developmental progression and confirm identity of PSC-derived midbrain DA neurons. In vivo survival and function is demonstrated in Parkinsons disease models using three host species. Long-term engraftment in 6-hydroxy-dopamine-lesioned mice and rats demonstrates robust survival of midbrain DA neurons derived from human embryonic stem (ES) cells, complete restoration of amphetamine-induced rotation behaviour and improvements in tests of forelimb use and akinesia. Finally, scalability is demonstrated by transplantation into parkinsonian monkeys. Excellent DA neuron survival, function and lack of neural overgrowth in the three animal models indicate promise for the development of cell-based therapies in Parkinsons disease.Human pluripotent stem cells (PSCs) are a promising source of cells for applications in regenerative medicine. Directed differentiation of PSCs into specialized cells such as spinal motoneurons or midbrain dopamine (DA) neurons has been achieved. However, the effective use of PSCs for cell therapy has lagged behind. Whereas mouse PSC-derived DA neurons have shown efficacy in models of Parkinson’s disease, DA neurons from human PSCs generally show poor in vivo performance. There are also considerable safety concerns for PSCs related to their potential for teratoma formation or neural overgrowth. Here we present a novel floor-plate-based strategy for the derivation of human DA neurons that efficiently engraft in vivo, suggesting that past failures were due to incomplete specification rather than a specific vulnerability of the cells. Midbrain floor-plate precursors are derived from PSCs 11 days after exposure to small molecule activators of sonic hedgehog (SHH) and canonical WNT signalling. Engraftable midbrain DA neurons are obtained by day 25 and can be maintained in vitro for several months. Extensive molecular profiling, biochemical and electrophysiological data define developmental progression and confirm identity of PSC-derived midbrain DA neurons. In vivo survival and function is demonstrated in Parkinson’s disease models using three host species. Long-term engraftment in 6-hydroxy-dopamine-lesioned mice and rats demonstrates robust survival of midbrain DA neurons derived from human embryonic stem (ES) cells, complete restoration of amphetamine-induced rotation behaviour and improvements in tests of forelimb use and akinesia. Finally, scalability is demonstrated by transplantation into parkinsonian monkeys. Excellent DA neuron survival, function and lack of neural overgrowth in the three animal models indicate promise for the development of cell-based therapies in Parkinson’s disease.


Nature Biotechnology | 2003

Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice

Tiziano Barberi; Péter Klivényi; Noel Y. Calingasan; Hyojin Lee; Hibiki Kawamata; Kathleen Loonam; Anselme L. Perrier; Juan L. Brusés; Maria E. Rubio; Norbert Topf; Viviane Tabar; Neil L. Harrison; M. Flint Beal; Malcolm A. S. Moore; Lorenz Studer

Existing protocols for the neural differentiation of mouse embryonic stem (ES) cells require extended in vitro culture, yield variable differentiation results or are limited to the generation of selected neural subtypes. Here we provide a set of coculture conditions that allows rapid and efficient derivation of most central nervous system phenotypes. The fate of both fertilization- and nuclear transfer–derived ES (ntES) cells was directed selectively into neural stem cells, astrocytes, oligodendrocytes or neurons. Specific differentiation into γ-aminobutyric acid (GABA), dopamine, serotonin or motor neurons was achieved by defining conditions to induce forebrain, midbrain, hindbrain and spinal cord identity. Neuronal function of ES cell–derived dopaminergic neurons was shown in vitro by electron microscopy, measurement of neurotransmitter release and intracellular recording. Furthermore, transplantation of ES and ntES cell–derived dopaminergic neurons corrected the phenotype of a mouse model of Parkinson disease, demonstrating an in vivo application of therapeutic cloning in neural disease.


Genes & Development | 2008

Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage

Yechiel Elkabetz; Georgia Panagiotakos; George Al Shamy; Nicholas D. Socci; Viviane Tabar; Lorenz Studer

Neural stem cells (NSCs) yield both neuronal and glial progeny, but their differentiation potential toward multiple region-specific neuron types remains remarkably poor. In contrast, embryonic stem cell (ESC) progeny readily yield region-specific neuronal fates in response to appropriate developmental signals. Here we demonstrate prospective and clonal isolation of neural rosette cells (termed R-NSCs), a novel NSC type with broad differentiation potential toward CNS and PNS fates and capable of in vivo engraftment. R-NSCs can be derived from human and mouse ESCs or from neural plate stage embryos. While R-NSCs express markers classically associated with NSC fate, we identified a set of genes that specifically mark the R-NSC state. Maintenance of R-NSCs is promoted by activation of SHH and Notch pathways. In the absence of these signals, R-NSCs rapidly lose rosette organization and progress to a more restricted NSC stage. We propose that R-NSCs represent the first characterized NSC stage capable of responding to patterning cues that direct differentiation toward region-specific neuronal fates. In addition, the R-NSC-specific genetic markers presented here offer new tools for harnessing the differentiation potential of human ESCs.


Nature Biotechnology | 2007

Isolation and directed differentiation of neural crest stem cells derived from human embryonic stem cells

Gabsang Lee; Hyesoo Kim; Yechiel Elkabetz; George Al Shamy; Georgia Panagiotakos; Tiziano Barberi; Viviane Tabar; Lorenz Studer

Vertebrate neural crest development depends on pluripotent, migratory precursor cells. Although avian and murine neural crest stem (NCS) cells have been identified, the isolation of human NCS cells has remained elusive. Here we report the derivation of NCS cells from human embryonic stem cells at the neural rosette stage. We show that NCS cells plated at clonal density give rise to multiple neural crest lineages. The human NCS cells can be propagated in vitro and directed toward peripheral nervous system lineages (peripheral neurons, Schwann cells) and mesenchymal lineages (smooth muscle, adipogenic, osteogenic and chondrogenic cells). Transplantation of human NCS cells into the developing chick embryo and adult mouse hosts demonstrates survival, migration and differentiation compatible with neural crest identity. The availability of unlimited numbers of human NCS cells offers new opportunities for studies of neural crest development and for efforts to model and treat neural crest–related disorders.


Lancet Neurology | 2003

Neural transplantation for the treatment of Parkinson's disease

Anders Björklund; Stephen B. Dunnett; Patrik Brundin; Jon Stoessl; Curt R. Freed; Robert E. Breeze; Marc Levivier; Marc Peschanski; Lorenz Studer; Roger Barker

trials showed unequivocally that human fetal dopaminergicneurons can survive and function for more than 10 years inthe striatum of patients with PD and show no signs of beingaffected by the ongoing disease process. These studies have also provided a clear indication that grafted fetaldopaminergic neurons can be therapeutically effective. On thebasis of the limited, but encouraging, observations in theseearly open-label trials,


Cell Stem Cell | 2013

Human iPSC-Based Modeling of Late-Onset Disease via Progerin-Induced Aging

Justine Miller; Yosif Ganat; Sarah Kishinevsky; Robert L. Bowman; Becky Liu; Edmund Y. Tu; Pankaj K. Mandal; Elsa Vera; Jae-won Shim; Sonja Kriks; Tony Taldone; Noemi Fusaki; Mark J. Tomishima; Dimitri Krainc; Teresa A. Milner; Derrick J. Rossi; Lorenz Studer

Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) resets their identity back to an embryonic age and, thus, presents a significant hurdle for modeling late-onset disorders. In this study, we describe a strategy for inducing aging-related features in human iPSC-derived lineages and apply it to the modeling of Parkinsons disease (PD). Our approach involves expression of progerin, a truncated form of lamin A associated with premature aging. We found that expression of progerin in iPSC-derived fibroblasts and neurons induces multiple aging-related markers and characteristics, including dopamine-specific phenotypes such as neuromelanin accumulation. Induced aging in PD iPSC-derived dopamine neurons revealed disease phenotypes that require both aging and genetic susceptibility, such as pronounced dendrite degeneration, progressive loss of tyrosine hydroxylase (TH) expression, and enlarged mitochondria or Lewy-body-precursor inclusions. Thus, our study suggests that progerin-induced aging can be used to reveal late-onset age-related disease features in hiPSC-based disease models.


Nature Medicine | 2007

Derivation of engraftable skeletal myoblasts from human embryonic stem cells

Tiziano Barberi; Michelle S. Bradbury; Zehra Dincer; Georgia Panagiotakos; Nicholas D. Socci; Lorenz Studer

Human embryonic stem cells (hESCs) are a promising source for cell therapy in degenerative diseases. A key step in establishing the medical potential of hESCs is the development of techniques for the conversion of hESCs into tissue-restricted precursors suitable for transplantation. We recently described the derivation of multipotent mesenchymal precursors from hESCs. Nevertheless, our previous study was limited by the requirement for mouse feeders and the lack of in vivo data. Here we report a stroma-free induction system for deriving mesenchymal precursors. Selective culture conditions and fluorescence-activated cell sorting (FACS)-mediated purification yielded multipotent mesenchymal precursors and skeletal myoblasts. Skeletal muscle cells undergo in vitro maturation resulting in myotube formation and spontaneous twitching. We found that hESC-derived skeletal myoblasts were viable after transplantation into the tibialis anterior muscle of SCID/Beige mice, as assessed by bioluminescence imaging. Lack of teratoma formation and evidence of long-term myoblast engraftment suggests considerable potential for future therapeutic applications.


Cell Stem Cell | 2013

Human iPSC-Derived Oligodendrocyte Progenitor Cells Can Myelinate and Rescue a Mouse Model of Congenital Hypomyelination

Su Wang; Janna Bates; Xiaojie Li; Steven Schanz; Devin Chandler-Militello; Corri Levine; Nimet Maherali; Lorenz Studer; Martha S. Windrem; Steven A. Goldman

Neonatal engraftment by oligodendrocyte progenitor cells (OPCs) permits the myelination of the congenitally dysmyelinated brain. To establish a potential autologous source of these cells, we developed a strategy by which to differentiate human induced pluripotent stem cells (hiPSCs) into OPCs. From three hiPSC lines, as well as from human embryonic stem cells (hESCs), we generated highly enriched OLIG2(+)/PDGFRα(+)/NKX2.2(+)/SOX10(+) human OPCs, which could be further purified using fluorescence-activated cell sorting. hiPSC OPCs efficiently differentiated into both myelinogenic oligodendrocytes and astrocytes, in vitro and in vivo. Neonatally engrafted hiPSC OPCs robustly myelinated the brains of myelin-deficient shiverer mice and substantially increased their survival. The speed and efficiency of myelination by hiPSC OPCs was higher than that previously observed using fetal-tissue-derived OPCs, and no tumors from these grafts were noted as long as 9 months after transplant. These results suggest the potential utility of hiPSC-derived OPCs in treating disorders of myelin loss.

Collaboration


Dive into the Lorenz Studer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Viviane Tabar

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gabsang Lee

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonja Kriks

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nadja Zeltner

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Faranak Fattahi

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge