Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yosif Ganat is active.

Publication


Featured researches published by Yosif Ganat.


Nature | 2011

Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease

Sonja Kriks; Jae-won Shim; Jinghua Piao; Yosif Ganat; Dustin R. Wakeman; Zhi-Zhong Xie; Luis Carrillo-Reid; Gordon Auyeung; Chris Antonacci; Amanda Marie Buch; Lichuan Yang; M. Flint Beal; D. James Surmeier; Jeffrey H. Kordower; Viviane Tabar; Lorenz Studer

Human pluripotent stem cells (PSCs) are a promising source of cells for applications in regenerative medicine. Directed differentiation of PSCs into specialized cells such as spinal motoneurons or midbrain dopamine (DA) neurons has been achieved. However, the effective use of PSCs for cell therapy has lagged behind. Whereas mouse PSC-derived DA neurons have shown efficacy in models of Parkinsons disease, DA neurons from human PSCs generally show poor in vivo performance. There are also considerable safety concerns for PSCs related to their potential for teratoma formation or neural overgrowth. Here we present a novel floor-plate-based strategy for the derivation of human DA neurons that efficiently engraft in vivo, suggesting that past failures were due to incomplete specification rather than a specific vulnerability of the cells. Midbrain floor-plate precursors are derived from PSCs 11 days after exposure to small molecule activators of sonic hedgehog (SHH) and canonical WNT signalling. Engraftable midbrain DA neurons are obtained by day 25 and can be maintained in vitro for several months. Extensive molecular profiling, biochemical and electrophysiological data define developmental progression and confirm identity of PSC-derived midbrain DA neurons. In vivo survival and function is demonstrated in Parkinsons disease models using three host species. Long-term engraftment in 6-hydroxy-dopamine-lesioned mice and rats demonstrates robust survival of midbrain DA neurons derived from human embryonic stem (ES) cells, complete restoration of amphetamine-induced rotation behaviour and improvements in tests of forelimb use and akinesia. Finally, scalability is demonstrated by transplantation into parkinsonian monkeys. Excellent DA neuron survival, function and lack of neural overgrowth in the three animal models indicate promise for the development of cell-based therapies in Parkinsons disease.Human pluripotent stem cells (PSCs) are a promising source of cells for applications in regenerative medicine. Directed differentiation of PSCs into specialized cells such as spinal motoneurons or midbrain dopamine (DA) neurons has been achieved. However, the effective use of PSCs for cell therapy has lagged behind. Whereas mouse PSC-derived DA neurons have shown efficacy in models of Parkinson’s disease, DA neurons from human PSCs generally show poor in vivo performance. There are also considerable safety concerns for PSCs related to their potential for teratoma formation or neural overgrowth. Here we present a novel floor-plate-based strategy for the derivation of human DA neurons that efficiently engraft in vivo, suggesting that past failures were due to incomplete specification rather than a specific vulnerability of the cells. Midbrain floor-plate precursors are derived from PSCs 11 days after exposure to small molecule activators of sonic hedgehog (SHH) and canonical WNT signalling. Engraftable midbrain DA neurons are obtained by day 25 and can be maintained in vitro for several months. Extensive molecular profiling, biochemical and electrophysiological data define developmental progression and confirm identity of PSC-derived midbrain DA neurons. In vivo survival and function is demonstrated in Parkinson’s disease models using three host species. Long-term engraftment in 6-hydroxy-dopamine-lesioned mice and rats demonstrates robust survival of midbrain DA neurons derived from human embryonic stem (ES) cells, complete restoration of amphetamine-induced rotation behaviour and improvements in tests of forelimb use and akinesia. Finally, scalability is demonstrated by transplantation into parkinsonian monkeys. Excellent DA neuron survival, function and lack of neural overgrowth in the three animal models indicate promise for the development of cell-based therapies in Parkinson’s disease.


Cell Stem Cell | 2013

Human iPSC-Based Modeling of Late-Onset Disease via Progerin-Induced Aging

Justine Miller; Yosif Ganat; Sarah Kishinevsky; Robert L. Bowman; Becky Liu; Edmund Y. Tu; Pankaj K. Mandal; Elsa Vera; Jae-won Shim; Sonja Kriks; Tony Taldone; Noemi Fusaki; Mark J. Tomishima; Dimitri Krainc; Teresa A. Milner; Derrick J. Rossi; Lorenz Studer

Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) resets their identity back to an embryonic age and, thus, presents a significant hurdle for modeling late-onset disorders. In this study, we describe a strategy for inducing aging-related features in human iPSC-derived lineages and apply it to the modeling of Parkinsons disease (PD). Our approach involves expression of progerin, a truncated form of lamin A associated with premature aging. We found that expression of progerin in iPSC-derived fibroblasts and neurons induces multiple aging-related markers and characteristics, including dopamine-specific phenotypes such as neuromelanin accumulation. Induced aging in PD iPSC-derived dopamine neurons revealed disease phenotypes that require both aging and genetic susceptibility, such as pronounced dendrite degeneration, progressive loss of tyrosine hydroxylase (TH) expression, and enlarged mitochondria or Lewy-body-precursor inclusions. Thus, our study suggests that progerin-induced aging can be used to reveal late-onset age-related disease features in hiPSC-based disease models.


The Journal of Neuroscience | 2006

Early Postnatal Astroglial Cells Produce Multilineage Precursors and Neural Stem Cells In Vivo

Yosif Ganat; John Silbereis; Clinton Cave; Hai Ngu; George M. Anderson; Yasushi Ohkubo; Laura R. Ment; Flora M. Vaccarino

To identify the fates that astroglial cells can attain in the postnatal brain, we generated mice carrying an inducible Cre recombinase (Cre-ERT2) controlled by the human GFAP promoter (hGFAP). In mice carrying the GCE (hGFAP-Cre-ERT2) transgene, OHT (4-hydroxy-tamoxifen) injections induced Cre recombination in astroglial cells at postnatal day 5 and allowed us to permanently tag these cells with reporter genes. Three days after recombination, reporter-tagged cells were quiescent astroglial cells that expressed the stem cell marker LeX in the subventricular zone (SVZ) and dentate gyrus (DG). After 2–4 weeks, the tagged GFAP lineage included proliferating progenitors expressing the neuronal marker Dcx (Doublecortin) in the SVZ and the DG. After 4 weeks, the GFAP lineage generated mature neurons in the olfactory bulb (OB), DG, and, strikingly, also in the cerebral cortex. A major portion of all neurons in the DG and OB born at the end of the first postnatal week were generated from GFAP+ cells. In addition to neurons, mature oligodendrocytes and astrocytes populating the cerebral cortex and white matter were also the progeny of GFAP+ astroglial ancestors. Thus, genetic fate mapping of postnatal GFAP+ cells reveals that they seed the postnatal brain with neural progenitors/stem cells that in turn give rise to neural precursors and their mature neuronal and oligodendrocytic progeny in many CNS regions, including the cerebral cortex.


Experimental Neurology | 2006

Cortical neurogenesis enhanced by chronic perinatal hypoxia

Devon M. Fagel; Yosif Ganat; John Silbereis; Timothy Ebbitt; William B. Stewart; Heping Zhang; Laura R. Ment; Flora M. Vaccarino

Most regions of the mature mammalian brain, including the cerebral cortex, appear to be unable to support the genesis of new neurons. Here, we report that a low level of neurogenesis occurs in the cerebral cortex of the infant mouse brain and is enhanced by chronic perinatal hypoxia. When mice were reared in a low-oxygen environment from postnatal days 3 to 11, approximately 30% of the cortical neurons were lost after the insult; yet this damage was transient. The loss of cortical neuron number, cortical volume, and brain weight were all reversed during the recovery period. At P18, 7 days after the cessation of hypoxia, there was a marked increase in astroglial cell proliferation within the SVZ, as assessed by 5-bromodeoxyuridine (BrdU) incorporation in S-phase cells. One month after BrdU incorporation, 40% more BrdU-positive cells were found in the cerebral cortex of hypoxic-reared as compared to normoxic control mice. Among these newly generated cortical cells, approximately 45% were oligodendrocytes, 35% were astrocytes, and 10% were neurons in both hypoxic and normoxic mice. However, twice as many BrdU-labeled cells expressed neuronal markers in the neocortex in mice recovering from hypoxia as compared to controls. In both hypoxic-reared and normoxic infant/juvenile mice, putative neuroblasts could be seen detaching from the forebrain subventricular zone, migrating through the subcortical white matter and entering the lower cortical layers, 5 to 11 days after their last mitotic division. We suggest that cortical neurogenesis may play a significant role in repairing neuronal losses after neonatal injury.


Nature Biotechnology | 2015

Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson's disease model

Julius A. Steinbeck; Se Joon Choi; Ana Mrejeru; Yosif Ganat; Karl Deisseroth; David Sulzer; Eugene V. Mosharov; Lorenz Studer

Recent studies have shown evidence of behavioral recovery after transplantation of human pluripotent stem cell (PSC)-derived neural cells in animal models of neurological disease. However, little is known about the mechanisms underlying graft function. Here we use optogenetics to modulate in real time electrophysiological and neurochemical properties of mesencephalic dopaminergic (mesDA) neurons derived from human embryonic stem cells (hESCs). In mice that had recovered from lesion-induced Parkinsonian motor deficits, light-induced selective silencing of graft activity rapidly and reversibly re-introduced the motor deficits. The re-introduction of motor deficits was prevented by the dopamine agonist apomorphine. These results suggest that functionality depends on graft neuronal activity and dopamine release. Combining optogenetics, slice electrophysiology and pharmacological approaches, we further show that mesDA-rich grafts modulate host glutamatergic synaptic transmission onto striatal medium spiny neurons in a manner reminiscent of endogenous mesDA neurons. Thus, application of optogenetics in cell therapy can link transplantation, animal behavior and postmortem analysis to enable the identification of mechanisms that drive recovery.


Journal of Clinical Investigation | 2012

Identification of embryonic stem cell-derived midbrain dopaminergic neurons for engraftment.

Yosif Ganat; Elizabeth L. Calder; Sonja Kriks; Jenny Nelander; Edmund Y. Tu; Fan Jia; Daniela Battista; Neil L. Harrison; Malin Parmar; Mark J. Tomishima; Urs Rutishauser; Lorenz Studer

Embryonic stem cells (ESCs) represent a promising source of midbrain dopaminergic (DA) neurons for applications in Parkinson disease. However, ESC-based transplantation paradigms carry a risk of introducing inappropriate or tumorigenic cells. Cell purification before transplantation may alleviate these concerns and enable identification of the specific DA neuron stage most suitable for cell therapy. Here, we used 3 transgenic mouse ESC reporter lines to mark DA neurons at 3 stages of differentiation (early, middle, and late) following induction of differentiation using Hes5::GFP, Nurr1::GFP, and Pitx3::YFP transgenes, respectively. Transplantation of FACS-purified cells from each line resulted in DA neuron engraftment, with the mid-stage and late-stage neuron grafts being composed almost exclusively of midbrain DA neurons. Mid-stage neuron cell grafts had the greatest amount of DA neuron survival and robustly induced recovery of motor deficits in hemiparkinsonian mice. Our data suggest that the Nurr1+ stage (middle stage) of neuronal differentiation is particularly suitable for grafting ESC-derived DA neurons. Moreover, global transcriptome analysis of progeny from each of the ESC reporter lines revealed expression of known midbrain DA neuron genes and also uncovered previously uncharacterized midbrain genes. These data demonstrate remarkable fate specificity of ESC-derived DA neurons and outline a sequential stage-specific ESC reporter line paradigm for in vivo gene discovery.


Cell Stem Cell | 2011

miR-371-3 Expression Predicts Neural Differentiation Propensity in Human Pluripotent Stem Cells

Hyesoo Kim; Gabsang Lee; Yosif Ganat; Eirini P. Papapetrou; Inna Lipchina; Nicholas D. Socci; Michel Sadelain; Lorenz Studer

The use of pluripotent stem cells in regenerative medicine and disease modeling is complicated by the variation in differentiation properties between lines. In this study, we characterized 13 human embryonic stem cell (hESC) and 26 human induced pluripotent stem cell (hiPSC) lines to identify markers that predict neural differentiation behavior. At a general level, markers previously known to distinguish mouse ESCs from epiblast stem cells (EPI-SCs) correlated with neural differentiation behavior. More specifically, quantitative analysis of miR-371-3 expression prospectively identified hESC and hiPSC lines with differential neurogenic differentiation propensity and in vivo dopamine neuron engraftment potential. Transient KLF4 transduction increased miR-371-3 expression and altered neurogenic behavior and pluripotency marker expression. Conversely, suppression of miR-371-3 expression in KLF4-transduced cells rescued neural differentiation propensity. miR-371-3 expression level therefore appears to have both a predictive and a functional role in determining human pluripotent stem cell neurogenic differentiation behavior.


Neuroscience | 2002

Chronic hypoxia up-regulates fibroblast growth factor ligands in the perinatal brain and induces fibroblast growth factor-responsive radial glial cells in the sub-ependymal zone.

Yosif Ganat; S Soni; M Chacon; Michael L. Schwartz; Flora M. Vaccarino

A number of signaling molecules have been implicated in the acute response to hypoxia/ischemia in the adult brain. In contrast, the reaction to chronic hypoxemia is largely unexplored. We used a protocol of chronic hypoxia in rat pups during the first three postnatal weeks, encompassing the period of cellular plasticity in the cerebral cortex. We find that the levels of fibroblast growth factor 1 (FGF1) and FGF2, two members of the FGF family, increase after 2 weeks of chronic hypoxia. In contrast, members of the neurotrophin family are unaffected. FGF2 is normally expressed in the nucleus of mature, glial fibrillary acidic protein (GFAP)-containing astrocytes. Under hypoxia, most FGF2-containing cells do not express detectable levels of GFAP, suggesting that chronic low O(2) induces their transformation into more immature glial phenotypes. Remarkably, hypoxia promotes the appearance of radial glia throughout the sub-ventricular and ependymal zones. Most of these cells express vimentin and brain lipid binding protein. A subset of these radial glial cells expresses FGF receptor 1, and are in close contact with FGF2-positive cells in the sub-ventricular zone. Thus, FGF receptor signaling in radial glia may foster cell genesis after chronic hypoxic damage. From the results of this study we suggest that after the chronic exposure to low levels of oxygen during development, the expression of radial glia increases in the forebrain periventricular region. We envision that astroglia, which are the direct descendants of radial glia, are reverting back to immature glial cells. Alternatively, hypoxia hinders the normal maturation of radial glia into GFAP-expressing astrocytes. Interestingly, hypoxia increases the levels of expression of FGF2, a factor that is essential for neuronal development. Furthermore, chronic hypoxia up-regulated FGF2s major receptor in the periventricular region. Because radial glia have been suggested to play a key role in neurogenesis and cell migration, our data suggests that hypoxia-induced FGF signaling in radial glia may represent part of a conserved program capable of regenerating neurons in the brain after injury.


The Journal of Neuroscience | 2009

Fgfr1 Is Required for Cortical Regeneration and Repair after Perinatal Hypoxia

Devon M. Fagel; Yosif Ganat; Elise Cheng; John Silbereis; Yasushi Ohkubo; Laura R. Ment; Flora M. Vaccarino

Chronic postnatal hypoxia causes an apparent loss of cortical neurons that is reversed during recovery (Fagel et al., 2006). The cellular and molecular mechanisms underlying this plasticity are not understood. Here, we show that chronic hypoxia from postnatal days 3 (P3) to 10 causes a 30% decrease in cortical neurons and a 24% decrease in cortical volume. T-brain-1 (Tbr1)+ and SMI-32+ excitatory neuron numbers were completely recovered 1 month after the insult, but the mice showed a residual deficit in Parvalbumin+ and Calretinin+ GABAergic interneurons. In contrast, hypoxic mice carrying a disrupted fibroblast growth factor receptor-1 (Fgfr1) gene in GFAP+ cells [Fgfr1 conditional knock-out (cKO)], demonstrated a persistent loss of excitatory cortical neurons and a worsening of the interneuron defect. Labeling proliferating progenitors at P17 revealed increased generation of cortical NeuN+ and Tbr1+ excitatory neurons in wild-type mice subjected to hypoxic insult, whereas Fgfr1 cKO failed to mount a cortical neurogenetic response. Hypoxic wild-type mice also demonstrated a twofold increase in cell proliferation in the subventricular zone (SVZ) at P17 and a threefold increase in neurogenesis in the olfactory bulb (OB) at P48, compared with normoxic mice. In contrast, Fgfr1 cKO mice had decreased SVZ cell proliferation and curtailed reactive neurogenesis in the OB. Thus, the activation of FGFR-1 in GFAP+ cells is required for neuronal recovery after neonatal hypoxic injury, which is attributable in part to enhanced cortical and OB neurogenesis. In contrast, there is incomplete recovery of inhibitory neurons after injury, which may account for persistent behavioral deficits.


Neuropsychopharmacology | 2001

Stem Cells in Neurodevelopment and Plasticity

Flora M. Vaccarino; Yosif Ganat; Yuchun Zhang; Wei Zheng

The processes of stem cell proliferation and differentiation during embryogenesis are governed by transcription factors that regulate the regional differentiation of the central nervous system (CNS). Do neural “stem” cells persisting in the postnatal CNS disobey this sequence of events? The division of neural progenitor cells is promoted by basic Fibroblast Growth Factor Fgf2 or Epidermal Growth Factor Egf. However, while the intraventricular administration of FgF2 during embryogenesis increases the generation of cortical pyramidal neurons, the same treatment in the adult CNS produces interneurons of the olfactory bulb. The competence of neural progenitor cells to respond to Fgf is dictated by nuclear transcription factors that constrain neuronal fates through time. Developmentally regulated transcriptional programs are regulated by cell interactions, as dividing cells check their molecular signature against that of their environment. Thus, cell surface interactions account for competitive phenomena among pools of cells, including the inhibitory effect of neurons on the division of their progenitors, and may also explain the “permissive” effects of non-CNS environments. The challenge remains to understand the genetic programs that control the fate of progenitor cells within the postnatal CNS and their regulation by stress, apoptosis and environmental perturbations. These programs are likely to be similar to gene cascades that control proliferation, differentiation and migration of progenitor cells at earlier stages of development.

Collaboration


Dive into the Yosif Ganat's collaboration.

Top Co-Authors

Avatar

Lorenz Studer

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonja Kriks

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge