Lorenzo Faraone
University of Western Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lorenzo Faraone.
Journal of Applied Physics | 2009
Antoni Rogalski; Jarek Antoszewski; Lorenzo Faraone
Hitherto, two distinct families of multielement detector arrays have been used for infrared (IR) imaging system applications: linear arrays for scanning systems (first generation) and two-dimensional arrays for staring systems (second generation). Nowadays, third-generation IR systems are being developed which, in the common understanding, provide enhanced capabilities such as larger numbers of pixels, higher frame rates, better thermal resolution, multicolor functionality, and/or other on-chip signal-processing functions. In this paper, fundamental and technological issues associated with the development and exploitation of third-generation IR photon detectors are discussed. In this class of detectors the two main competitors, HgCdTe photodiodes and quantum-well photoconductors, are considered. This is followed by discussions focused on the most recently developed focal plane arrays based on type-II strained-layer superlattices and quantum dot IR photodetectors. The main challenges facing multicolor devi...
Journal of Applied Physics | 1998
I. Vurgaftman; J. R. Meyer; C. A. Hoffman; D.A. Redfern; Jarek Antoszewski; Lorenzo Faraone; J.R. Lindemuth
We present an improved quantitative mobility spectrum analysis (i-QMSA) procedure for determining free electron and hole densities and mobilities from magnetic-field-dependent Hall and resistivity measurements on bulk or layered semiconductor samples. The i-QMSA technique is based on a fundamentally new approach, which optimizes the fit to the conductivity tensor components and their slopes by making those adjustments in the mobility spectra that result in the greatest error reduction. Empirical procedures for manipulating the mobility spectra are also introduced, with the dual purpose of reducing the error of the fit and simplifying the shape of the spectra to minimize the presence of unphysical artifacts. A fully automated computer implementation of the improved QMSA is applied to representative synthetic and real data sets involving various semiconductor material systems. These results show that, as compared with previous approaches, the presented algorithm maximizes the information that may be extract...
Journal of Electronic Materials | 1995
J. Antoszewski; D. J. Seymour; Lorenzo Faraone; J. R. Meyer; C. A. Hoffman
A quantitative mobility spectrum analysis (QMSA) of experimental Hall and resistivity data as a function of magnetic field is presented. This technique enables the conductivity contribution of bulk majority carriers to be separated from that of other species such as thermally generated minority carriers, electrons, and holes populating n and p doped regions, respectively, and two-dimensional species at surfaces and interface layers. Starting with a suitable first trial function such as the Beck and Anderson mobility spectrum analysis (MSA), a variation on the iterative procedure of Dziuba and Gorska is used to obtain a mobility spectrum which enables the various carrier species present in the sample to be identified. The QMSA algorithm combines the fully automated execution and visually meaningful output format of MSA with the quantitative accuracy of the conventional least-squares multi-carrier fitting procedure. Examples of applications to HgCdTe infrared detector materials and InAs/GaSb quantum wells are discussed. The ultimate goal of this paper is to provide an automated, universal algorithm which may be used routinely in the analysis and interpretation of magneto-transport data for diverse semiconductor materials and bandgap engineered structures.
IEEE\/ASME Journal of Microelectromechanical Systems | 2009
Jason S. Milne; John Dell; Adrian Keating; Lorenzo Faraone
This paper describes the use of strain stiffening in fixed-fixed beam actuators to extend the tuning range of microelectromechanical-systems-based Fabry-Perot filters. The measured wavelength tuning range of 1.615-2.425 mum is the largest reported for such a filter. Curvature in the movable mirror was corrected using a low-power oxygen plasma to controllably alter the stress gradient in the mirror. After curvature correction, the linewidth of a filter was 52 nm, close to the theoretical minimum for our mirror design. As a proof of concept, a filter was bonded to a broadband infrared detector, realizing a wavelength-tunable infrared detector. All measured data have been compared to theoretical models of the optics and mechanics of the filters, with excellent agreement between theory and measurement demonstrated in all cases. Finally, the Youngs modulus and stress of the actuator materials were extracted directly from the measured voltage-displacement curves, demonstrating a novel technique for material property measurement.
Applied physics reviews | 2014
P. Martyniuk; Jarek Antoszewski; Mariusz Martyniuk; Lorenzo Faraone; Antoni Rogalski
In 1959, Lawson and co-workers published the paper which triggered development of variable band gap Hg1−xCdxTe (HgCdTe) alloys providing an unprecedented degree of freedom in infrared detector design. HgCdTe ternary alloy has been used for realization of detectors operating under various modalities including: photoconductor, photodiode, and metal-insulator-semiconductor detector designs. Over the last five decades, this material system has successfully overcome the challenges from other material systems. It is important to notice that none of these competitors can compete in terms of fundamental properties. The competition may represent more mature technology but not higher performance or, with the exception of thermal detectors, higher operating temperatures (HOTs) for ultimate performance. In the last two decades, several new concepts for improvement of the performance of photodetectors have been proposed. These new concepts are particularly addressing the drive towards the so called HOT detectors aiming to increase detector operating temperatures. In this paper, new strategies in photodetector designs are reviewed, including barrier detectors, unipolar barrier photodiodes, multistage detectors and trapping detectors. Some of these new solutions have emerged as a real competitor to HgCdTe photodetectors.
IEEE Transactions on Electron Devices | 2003
Gilberto A. Umana-Membreno; John Dell; Giacinta Parish; Brett Nener; Lorenzo Faraone; Umesh K. Mishra
The effect of /spl gamma/-ray exposure on the electrical characteristics of nickel/n-GaN Schottky barrier diodes has been investigated using current-voltage (I-V), capacitance-voltage (C-V), and deep-level transient spectroscopy (DLTS) measurements. The results indicate that /spl gamma/-irradiation induces an increase in the effective Schottky barrier height extracted from C-V measurements. Increasing radiation dose was found to degrade the reverse leakage current, whereas its effect on the forward I-V characteristics was negligible. Low temperature (/spl les/50) post-irradiation annealing after a cumulative irradiation dose of 21 Mrad(Si) was found to restore the reverse I-V characteristics to pre-irradiation levels without significantly affecting the radiation-induced changes in C-V and forward I-V characteristics. Three shallow radiation-induced defect centers with thermal activation energies of 88 104 and 144 meV were detected by DLTS with a combined production rate of 2.12 /spl times/ 10/sup -3/ cm/sup -1/. These centers are likely to be related to nitrogen-vacancies. The effect of high-energy radiation exposure on device characteristics is discussed taking into account possible contact inhomogeneities arising from dislocations and interfacial defects. The DLTS results indicate that GaN has an intrinsically low susceptibility to radiation-induced material degradation, yet the effects observed in the Schottky diode I-V and C-V characteristics indicate that the total-dose radiation hardness of GaN devices may be limited by susceptibility of the metal-GaN interface to radiation-induced damage.
IEEE Transactions on Device and Materials Reliability | 2008
R. Menozzi; Gilberto A. Umana-Membreno; Brett Nener; Giacinta Parish; Giovanna Sozzi; Lorenzo Faraone; Umesh K. Mishra
This paper shows the application of simple dc techniques to the temperature-dependent characterization of AlGaN/ GaN HEMTs in terms of the following: 1) thermal resistance and 2) ohmic series resistance (at low drain bias). Despite their simplicity, these measurement techniques are shown to give valuable information about the device behavior over a wide range of ambient/channel temperatures. The experimental results are validated by comparison with independent measurements and numerical simulations.
Journal of Micromechanics and Microengineering | 2005
Han Huang; K.J. Winchester; Yinong Liu; Xiao Hu; Charles Musca; John Dell; Lorenzo Faraone
This paper reports an investigation on techniques for determining elastic modulus and intrinsic stress gradient in plasma-enhanced chemical vapor deposition (PECVD) silicon nitride thin films. The elastic property of the silicon nitride thin films was determined using the nanoindentation method on silicon nitride/silicon bilayer systems. A simple empirical formula was developed to deconvolute the film elastic modulus. The intrinsic stress gradient in the films was determined by using micrometric cantilever beams, cross-membrane structures and mechanical simulation. The deflections of the silicon nitride thin film cantilever beams and cross-membranes caused by in-thickness stress gradients were measured using optical interference microscopy. Finite-element beam models were built to compute the deflection induced by the stress gradient. Matching the deflection computed under a given gradient with that measured experimentally on fabricated samples allows the stress gradient of the PECVD silicon nitride thin films introduced from the fabrication process to be evaluated.
Journal of Physics D | 2009
Leo P. Schuler; Jason S. Milne; John Dell; Lorenzo Faraone
Commercially manufactured near-infrared (NIR) instruments became available about 50 years ago. While they have been designed for laboratory use in a controlled environment and boast high performance, they are generally bulky, fragile and maintenance intensive, and therefore expensive to purchase and maintain.Micromachining is a powerful technique to fabricate micromechanical parts such as integrated circuits. It was perfected in the 1980s and led to the invention of micro electro mechanical systems (MEMSs). The three characteristic features of MEMS fabrication technologies are miniaturization, multiplicity and microelectronics. Combined, these features allow the batch production of compact and rugged devices with integrated intelligence. In order to build more compact, more rugged and less expensive NIR instruments, MEMS technology has been successfully integrated into a range of new devices.In the first part of this paper we discuss the UWA MEMS-based Fabry–Perot spectrometer, its design and issues to be solved. MEMS-based Fabry–Perot filters primarily isolate certain wavelengths by sweeping across an incident spectrum and the resulting monochromatic signal is detected by a broadband detector. In the second part, we discuss other microspectrometers including other Fabry–Perot spectrometer designs, time multiplexing devices and mixed time/space multiplexing devices.
Journal of Applied Physics | 2008
V. Gopal; E. Plis; J.B. Rodriguez; C.E. Jones; Lorenzo Faraone; S. Krishna
This paper reports the results of modeling of electrical characteristics of midinfrared type II InAs∕GaSb strain layer superlattice (SLS) diode with p-on-n polarity. Bulk based model with the effective band gap of SLS material has been used in modeling of the experimental data. Temperature dependence of zero-bias resistance area product (R0A) and bias dependent dynamic resistance of the diode have been analyzed in detail to investigate dark current contributing mechanisms that are limiting the electrical performance of the diode. R0A of the diode is found to be limited by thermal diffusion currents at higher temperatures and Ohmic shunt resistance contribution limits it at low temperatures ∼82K.