Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lorenzo Frigerio is active.

Publication


Featured researches published by Lorenzo Frigerio.


The Plant Cell | 2011

Multivesicular Bodies Mature from the Trans -Golgi Network/Early Endosome in Arabidopsis

David Scheuring; Corrado Viotti; Falco Krüger; Fabian Künzl; Silke Sturm; Julia Bubeck; Stefan Hillmer; Lorenzo Frigerio; David G. Robinson; Peter Pimpl; Karin Schumacher

This work examines the origin and fate of multivesicular bodies (MVBs)/late endosomes, tracing their formation back to the trans-Golgi network (TGN)/early endosome and showing that their maturation into MVBs requires V-ATPase activity and ESCRT for the formation of the intraluminal vesicles and annexins for the release of MVBs from the TGN as transport carriers that fuse with the vacuole. The plant trans-Golgi network/early endosome (TGN/EE) is a major hub for secretory and endocytic trafficking with complex molecular mechanisms controlling sorting and transport of cargo. Vacuolar transport from the TGN/EE to multivesicular bodies/late endosomes (MVBs/LEs) is assumed to occur via clathrin-coated vesicles, although direct proof for their participation is missing. Here, we present evidence that post-TGN transport toward lytic vacuoles occurs independently of clathrin and that MVBs/LEs are derived from the TGN/EE through maturation. We show that the V-ATPase inhibitor concanamycin A significantly reduces the number of MVBs and causes TGN and MVB markers to colocalize in Arabidopsis thaliana roots. Ultrastructural analysis reveals the formation of MVBs from the TGN/EE and their fusion with the vacuole. The localization of the ESCRT components VPS28, VPS22, and VPS2 at the TGN/EE and MVBs/LEs indicates that the formation of intraluminal vesicles starts already at the TGN/EE. Accordingly, a dominant-negative mutant of VPS2 causes TGN and MVB markers to colocalize and blocks vacuolar transport. RNA interference–mediated knockdown of the annexin ANNAT3 also yields the same phenotype. Together, these data indicate that MVBs originate from the TGN/EE in a process that requires the action of ESCRT for the formation of intraluminal vesicles and annexins for the final step of releasing MVBs as a transport carrier to the vacuole.


The Plant Cell | 1997

Protein quality control along the route to the plant vacuole.

E. Pedrazzini; G. Giovinazzo; A. Bielli; M de Virgilio; Lorenzo Frigerio; M. Pesca; Franco Faoro; R. Bollini; A. Ceriotti; Alessandro Vitale

To acquire information on the relationships between structural maturation of proteins in the endoplasmic reticulum (ER) and their transport along the secretory pathway, we have analyzed the destiny of an assembly-defective form of the trimeric vacuolar storage glycoprotein phaseolin. In leaves of transgenic tobacco, where assembly-competent phaseolin is correctly targeted to the vacuole, defective phaseolin remains located in the ER or a closely related compartment where it represents a major ligand of the chaperone BiP. Defective phaseolin maintained susceptibility to endoglycosidase H and was slowly degraded by a process that is not inhibited by heat shock or brefeldin A, indicating that degradation does not involve transport along the secretory pathway. These results provide evidence for the presence of a quality control mechanism in the ER of plant cells that avoids intracellular trafficking of severely defective proteins and eventually leads to their degradation.


Plant Physiology | 2007

Fluorescent Reporter Proteins for the Tonoplast and the Vacuolar Lumen Identify a Single Vacuolar Compartment in Arabidopsis Cells

Paul R. Hunter; Christian P. Craddock; Sara Di Benedetto; Lynne M. Roberts; Lorenzo Frigerio

We generated fusions between three Arabidopsis (Arabidopsis thaliana) tonoplast intrinsic proteins (TIPs; α-, γ-, and δ-TIP) and yellow fluorescent protein (YFP). We also produced soluble reporters consisting of the monomeric red fluorescent protein (RFP) and either the C-terminal vacuolar sorting signal of phaseolin or the sequence-specific sorting signal of proricin. In transgenic Arabidopsis leaves, mature roots, and root tips, all TIP fusions localized to the tonoplast of the central vacuole and both of the lumenal RFP reporters were found within TIP-delimited vacuoles. In embryos from developing, mature, and germinating seeds, all three TIPs localized to the tonoplast of protein storage vacuoles. To determine the temporal TIP expression patterns and to rule out mistargeting due to overexpression, we generated plants expressing YFP fused to the complete genomic sequences of the three TIP isoforms. In transgenic Arabidopsis, γ-TIP expression was limited to vegetative tissues, but specifically excluded from root tips, whereas α-TIP was exclusively expressed during seed maturation. δ-TIP was expressed in vegetative tissues, but not root tips, at a later stage than γ-TIP. Our findings indicate that, in the Arabidopsis tissues analyzed, two different vacuolar sorting signals target soluble proteins to a single vacuolar location. Moreover, TIP isoform distribution is tissue and development specific, rather than organelle specific.


The Plant Cell | 1998

Sorting of Phaseolin to the Vacuole Is Saturable and Requires a Short C-Terminal Peptide

Lorenzo Frigerio; Maddalena de Virgilio; Alessandra Prada; Franco Faoro; Alessandro Vitale

Phaseolin, one of the major legume proteins for human nutrition, is a trimeric glycoprotein of the 7S class that accumulates in the protein storage vacuoles of common bean. Phaseolin is cotranslationally introduced into the lumen of the endoplasmic reticulum; from there, it is transported through the Golgi complex to the storage vacuoles. Phaseolin is also transported to the vacuole in vegetative tissues of transgenic plants. By transient and permanent expression in tobacco leaf cells, we show here that vacuolar sorting of phaseolin is saturable and that saturation leads to Golgi-mediated secretion from the cell. A mutated phaseolin, in which the four C-terminal residues (Ala, Phe, Val, and Tyr) were deleted, efficiently formed trimers but was secreted entirely outside of the cells in transgenic tobacco leaves, indicating that the deleted sequence contains information necessary for interactions with the saturable vacuolar sorting machinery. In the apoplast, the secreted phaseolin remained intact; this is similar to what occurs to wild-type phaseolin in bean storage vacuoles, whereas in vegetative vacuoles of transgenic plants, the storage protein is fragmented.


The Plant Cell | 2010

Five Arabidopsis Reticulon Isoforms Share Endoplasmic Reticulum Location, Topology, and Membrane-Shaping Properties

Imogen Sparkes; Nicholas Tolley; Isabel Aller; Julia Svozil; Anne Osterrieder; Stanley W. Botchway; Christopher Mueller; Lorenzo Frigerio; Chris Hawes

This article describes the localization and organization of several members of a family of proteins known as the reticulons that reside in the membrane of the endoplasmic reticulum (ER), which is responsible for synthesizing proteins for export out of the cell. The reticulons reside in the ER membrane, interact with each other, and induce curvature to make these ER compartments tubular in structure. The cortical endoplasmic reticulum (ER) in tobacco (Nicotiana tabacum) epidermal cells is a network of tubules and cisternae undergoing dramatic rearrangements. Reticulons are integral membrane proteins involved in shaping ER tubules. Here, we characterized the localization, topology, effect, and interactions of five Arabidopsis thaliana reticulons (RTNs), isoforms 1-4 and 13, in the cortical ER. Our results indicate that RTNLB13 and RTNLB1-4 colocate to and constrict the tubular ER membrane. All five RTNs preferentially accumulate on ER tubules and are excluded from ER cisternae. All isoforms share the same transmembrane topology, with N and C termini facing the cytosol and four transmembrane domains. We show by Förster resonance energy transfer and fluorescence lifetime imaging microscopy that several RTNs have the capacity to interact with themselves and each other, and we suggest that oligomerization is responsible for their residence in the ER membrane. We also show that a complete reticulon homology domain is required for both RTN residence in high-curvature ER membranes and ER tubule constriction, yet it is not necessary for homotypic interactions.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Ricin A chain without its partner B chain is degraded after retrotranslocation from the endoplasmic reticulum to the cytosol in plant cells.

Alessandra Di Cola; Lorenzo Frigerio; J. Michael Lord; Aldo Ceriotti; Lynne M. Roberts

When expressed in tobacco cells, the catalytic subunit of the dimeric ribosome inactivating protein, ricin, is first inserted into the endoplasmic reticulum (ER) and then degraded in a manner that can be partially inhibited by the proteasome inhibitor clasto-lactacystin β-lactone. Consistent with the implication of cytosolic proteasomes, degradation of ricin A chain is brefeldin A-insensitive and the polypeptides that accumulate in the presence of the proteasome inhibitor are not processed in a vacuole-specific fashion. Rather, these stabilized polypeptides are in part deglycosylated by a peptide:N-glycanase-like activity. Taken together, these results indicate that ricin A chain, albeit a structurally native protein, can behave as a substrate for ER to cytosol export, deglycosylation in the cytosol, and proteasomal degradation. Furthermore, retrotranslocation of this protein is not tightly coupled to proteasomal activity. These data are consistent with the hypothesis that ricin A chain can exploit the ER-associated protein degradation pathway to reach the cytosol. Although well characterized in mammalian and yeast cells, the operation of a similar pathway to the cytosol of plant cells has not previously been demonstrated.


Traffic | 2008

Overexpression of a plant reticulon remodels the lumen of the cortical endoplasmic reticulum but does not perturb protein transport.

Nicholas Tolley; Imogen Sparkes; Paul R. Hunter; Christian P. Craddock; James Nuttall; Lynne M. Roberts; Chris Hawes; Emanuela Pedrazzini; Lorenzo Frigerio

We have cloned a member of the reticulon (RTN) family of Arabidopsis thaliana (RTNLB13). When fused to yellow fluorescent protein (YFP) and expressed in tobacco leaf epidermal cells, RTNLB13 is localized in the endoplasmic reticulum (ER). Coexpression of a soluble ER luminal marker reveals that YFP‐tagged, myc‐tagged or untagged RTNLB13 induces severe morphological changes to the lumen of the ER. We show, using fluorescence recovery after photobleaching (FRAP) analysis, that RTNLB13 overexpression greatly reduces diffusion of soluble proteins within the ER lumen, possibly by introducing constrictions into the membrane. In spite of this severe phenotype, Golgi shape, number and dynamics appear unperturbed and secretion of a reporter protein remains unaffected.


Biochemical Journal | 2009

The plant endoplasmic reticulum: a cell-wide web

Imogen Sparkes; Lorenzo Frigerio; Nicholas Tolley; Chris Hawes

The ER (endoplasmic reticulum) in higher plants forms a pleomorphic web of membrane tubules and small cisternae that pervade the cytoplasm, but in particular form a polygonal network at the cortex of the cell which may be anchored to the plasma membrane. The network is associated with the actin cytoskeleton and demonstrates extensive mobility, which is most likely to be dependent on myosin motors. The ER is characterized by a number of domains which may be associated with specific functions such as protein storage, or with direct interaction with other organelles such as the Golgi apparatus, peroxisomes and plastids. In the present review we discuss the nature of the network, the role of shape-forming molecules such as the recently described reticulon family of proteins and the function of some of the major domains within the ER network.


Traffic | 2008

Multiple Vacuoles in Plant Cells: Rule or Exception?

Lorenzo Frigerio; Giselbert Hinz; David G. Robinson

It is generally accepted that plant cells can contain multiple vacuoles with different functions, for example lytic vacuoles with lysosome‐like properties and protein storage vacuoles for reserve accumulation. Recent data call into question the generality of this theory. In this study, we review the published evidence for the existence of multiple vacuoles. We conclude that the multivacuole hypothesis is valid for a number of cases, but care should be taken before assuming that it applies universally.


The Plant Cell | 2001

Influence of KDEL on the Fate of Trimeric or Assembly-Defective Phaseolin: Selective Use of an Alternative Route to Vacuoles

Lorenzo Frigerio; Alessandra Pastres; Alessandra Prada; Alessandro Vitale

The tetrapeptide KDEL is commonly found at the C terminus of soluble proteins of the endoplasmic reticulum (ER), and it contributes to their localization by interacting with a receptor that recycles between the Golgi complex and the ER. We investigated the effects of the addition of KDEL to phaseolin, a protein normally delivered from the ER to storage vacuoles via the Golgi complex. We show that KDEL prevents acquisition of trans-Golgi–specific glycan modifications and causes interactions with the chaperone BiP that are distinct from the ones between BiP and defective proteins. KDEL markedly increases the stability of phaseolin, but a small proportion of phaseolin-KDEL slowly reaches the vacuole without undergoing Golgi-mediated glycan modifications, in a process that can be inhibited by brefeldin A but not monensin. Our results indicate that KDEL can operate with high efficiency before proteins can reach the late Golgi cisternae but allows or promotes delivery to vacuoles via an alternative mechanism. However, addition of KDEL does not alter the destiny of an assembly-defective form of phaseolin, suggesting that the plant ER quality control mechanism is dominant over KDEL effects.

Collaboration


Dive into the Lorenzo Frigerio's collaboration.

Top Co-Authors

Avatar

Chris Hawes

Oxford Brookes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aldo Ceriotti

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge