Lorenzo Pellis
University of Warwick
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lorenzo Pellis.
European Journal of Plant Pathology | 2012
Marco Pautasso; Thomas F. Döring; Matteo Garbelotto; Lorenzo Pellis; Michael Jeger
There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases. This overview addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods.
Science | 2015
Hans Heesterbeek; Roy M. Anderson; Viggo Andreasen; Shweta Bansal; Daniela De Angelis; Chris Dye; Ken T. D. Eames; W. John Edmunds; Simon D. W. Frost; Sebastian Funk; T. Déirdre Hollingsworth; Thomas A. House; Valerie Isham; Petra Klepac; Justin Lessler; James O. Lloyd-Smith; C. Jessica E. Metcalf; Denis Mollison; Lorenzo Pellis; Juliet R. C. Pulliam; M. G. Roberts; Cécile Viboud
Mathematical modeling of infectious diseases The spread of infectious diseases can be unpredictable. With the emergence of antibiotic resistance and worrying new viruses, and with ambitious plans for global eradication of polio and the elimination of malaria, the stakes have never been higher. Anticipation and measurement of the multiple factors involved in infectious disease can be greatly assisted by mathematical methods. In particular, modeling techniques can help to compensate for imperfect knowledge, gathered from large populations and under difficult prevailing circumstances. Heesterbeek et al. review the development of mathematical models used in epidemiology and how these can be harnessed to develop successful control strategies and inform public health policy. Science, this issue 10.1126/science.aaa4339 BACKGROUND Despite many notable successes in prevention and control, infectious diseases remain an enormous threat to human and animal health. The ecological and evolutionary dynamics of pathogens play out on a wide range of interconnected temporal, organizational, and spatial scales that span hours to months, cells to ecosystems, and local to global spread. Some pathogens are directly transmitted between individuals of a single species, whereas others circulate among multiple hosts, need arthropod vectors, or persist in environmental reservoirs. Many factors, including increasing antimicrobial resistance, human connectivity, population growth, urbanization, environmental and land-use change, as well as changing human behavior, present global challenges for prevention and control. Faced with this complexity, mathematical models offer valuable tools for understanding epidemiological patterns and for developing and evaluating evidence for decision-making in global health. ADVANCES During the past 50 years, the study of infectious disease dynamics has matured into a rich interdisciplinary field at the intersection of mathematics, epidemiology, ecology, evolutionary biology, immunology, sociology, and public health. The practical challenges range from establishing appropriate data collection to managing increasingly large volumes of information. The theoretical challenges require fundamental study of many-layered, nonlinear systems in which infections evolve and spread and where key events can be governed by unpredictable pathogen biology or human behavior. In this Review, we start with an examination of real-time outbreak response using the West African Ebola epidemic as an example. Here, the challenges range from underreporting of cases and deaths, and missing information on the impact of control measures to understanding human responses. The possibility of future zoonoses tests our ability to detect anomalous outbreaks and to estimate human-to-human transmissibility against a backdrop of ongoing zoonotic spillover while also assessing the risk of more dangerous strains evolving. Increased understanding of the dynamics of infections in food webs and ecosystems where host and nonhost species interact is key. Simultaneous multispecies infections are increasingly recognized as a notable public health burden, yet our understanding of how different species of pathogens interact within hosts is rudimentary. Pathogen genomics has become an essential tool for drawing inferences about evolution and transmission and, here but also in general, heterogeneity is the major challenge. Methods that depart from simplistic assumptions about random mixing are yielding new insights into the dynamics of transmission and control. There is rapid growth in estimation of model parameters from mismatched or incomplete data, and in contrasting model output with real-world observations. New data streams on social connectivity and behavior are being used, and combining data collected from very different sources and scales presents important challenges. All these mathematical endeavors have the potential to feed into public health policy and, indeed, an increasingly wide range of models is being used to support infectious disease control, elimination, and eradication efforts. OUTLOOK Mathematical modeling has the potential to probe the apparently intractable complexity of infectious disease dynamics. Coupled to continuous dialogue between decision-makers and the multidisciplinary infectious disease community, and by drawing on new data streams, mathematical models can lay bare mechanisms of transmission and indicate new approaches to prevention and control that help to shape national and international public health policy. Modeling for public health. Policy questions define the model’s purpose. Initial model design is based on current scientific understanding and the available relevant data. Model validation and fit to disease data may require further adaptation; sensitivity and uncertainty analysis can point to requirements for collection of additional specific data. Cycles of model testing and analysis thus lead to policy advice and improved scientific understanding. Despite some notable successes in the control of infectious diseases, transmissible pathogens still pose an enormous threat to human and animal health. The ecological and evolutionary dynamics of infections play out on a wide range of interconnected temporal, organizational, and spatial scales, which span hours to months, cells to ecosystems, and local to global spread. Moreover, some pathogens are directly transmitted between individuals of a single species, whereas others circulate among multiple hosts, need arthropod vectors, or can survive in environmental reservoirs. Many factors, including increasing antimicrobial resistance, increased human connectivity and changeable human behavior, elevate prevention and control from matters of national policy to international challenge. In the face of this complexity, mathematical models offer valuable tools for synthesizing information to understand epidemiological patterns, and for developing quantitative evidence for decision-making in global health.
Epidemics | 2015
Lorenzo Pellis; Frank Ball; Shweta Bansal; Ken T. D. Eames; Thomas A. House; Valerie Isham; Pieter Trapman
Networks offer a fertile framework for studying the spread of infection in human and animal populations. However, owing to the inherent high-dimensionality of networks themselves, modelling transmission through networks is mathematically and computationally challenging. Even the simplest network epidemic models present unanswered questions. Attempts to improve the practical usefulness of network models by including realistic features of contact networks and of host-pathogen biology (e.g. waning immunity) have made some progress, but robust analytical results remain scarce. A more general theory is needed to understand the impact of network structure on the dynamics and control of infection. Here we identify a set of challenges that provide scope for active research in the field of network epidemic models.
Bellman Prize in Mathematical Biosciences | 2012
Lorenzo Pellis; Frank Ball; Pieter Trapman
Highlights ► We consider SIR epidemic models with small mixing units. ► We provide a general definition of R0 in terms of branching processes. ► We apply it to models with households or other more complex social structures. ► We provide methods for calculating it.
PLOS Computational Biology | 2011
George Shirreff; Lorenzo Pellis; Oliver Laeyendecker; Christophe Fraser
Recent data shows that HIV-1 is characterised by variation in viral virulence factors that is heritable between infections, which suggests that viral virulence can be naturally selected at the population level. A trade-off between transmissibility and duration of infection appears to favour viruses of intermediate virulence. We developed a mathematical model to simulate the dynamics of putative viral genotypes that differ in their virulence. As a proxy for virulence, we use set-point viral load (SPVL), which is the steady density of viral particles in blood during asymptomatic infection. Mutation, the dependency of survival and transmissibility on SPVL, and host effects were incorporated into the model. The model was fitted to data to estimate unknown parameters, and was found to fit existing data well. The maximum likelihood estimates of the parameters produced a model in which SPVL converged from any initial conditions to observed values within 100–150 years of first emergence of HIV-1. We estimated the 1) host effect and 2) the extent to which the viral virulence genotype mutates from one infection to the next, and found a trade-off between these two parameters in explaining the variation in SPVL. The model confirms that evolution of virulence towards intermediate levels is sufficiently rapid for it to have happened in the early stages of the HIV epidemic, and confirms that existing viral loads are nearly optimal given the assumed constraints on evolution. The model provides a useful framework under which to examine the future evolution of HIV-1 virulence.
Epidemics | 2015
Frank Ball; Tom Britton; Thomas A. House; Valerie Isham; Denis Mollison; Lorenzo Pellis; Gianpaolo Scalia Tomba
This paper considers metapopulation models in the general sense, i.e. where the population is partitioned into sub-populations (groups, patches,...), irrespective of the biological interpretation they have, e.g. spatially segregated large sub-populations, small households or hosts themselves modelled as populations of pathogens. This framework has traditionally provided an attractive approach to incorporating more realistic contact structure into epidemic models, since it often preserves analytic tractability (in stochastic as well as deterministic models) but also captures the most salient structural inhomogeneity in contact patterns in many applied contexts. Despite the progress that has been made in both the theory and application of such metapopulation models, we present here several major challenges that remain for future work, focusing on models that, in contrast to agent-based ones, are amenable to mathematical analysis. The challenges range from clarifying the usefulness of systems of weakly-coupled large sub-populations in modelling the spread of specific diseases to developing a theory for endemic models with household structure. They include also developing inferential methods for data on the emerging phase of epidemics, extending metapopulation models to more complex forms of human social structure, developing metapopulation models to reflect spatial population structure, developing computationally efficient methods for calculating key epidemiological model quantities, and integrating within- and between-host dynamics in models.
Journal of the Royal Society Interface | 2009
Lorenzo Pellis; Neil M. Ferguson; Christophe Fraser
The basic reproduction number R 0 is one of the most important concepts in modern infectious disease epidemiology. However, for more realistic and more complex models than those assuming homogeneous mixing in the population, other threshold quantities can be defined that are sometimes more useful and easily derived in terms of model parameters. In this paper, we present a model for the spread of a permanently immunizing infection in a population socially structured into households and workplaces/schools, and we propose and discuss a new household-to-household reproduction number R H for it. We show how R H overcomes some of the limitations of a previously proposed threshold parameter, and we highlight its relationship with the effort required to control an epidemic when interventions are targeted at randomly selected households.
Bellman Prize in Mathematical Biosciences | 2008
Lorenzo Pellis; Neil M. Ferguson; Christophe Fraser
Many important results in stochastic epidemic modelling are based on the Reed-Frost model or on other similar models that are characterised by unrealistic temporal dynamics. Nevertheless, they can be extended to many other more realistic models thanks to an argument first provided by Ludwig [Final size distributions for epidemics. Math. Biosci. 23 (1975) 33-46], that states that, for a disease leading to permanent immunity after recovery, under suitable conditions, a continuous-time infectious process has the same final size distribution as another more tractable discrete-generation contact process; in other words, the temporal dynamics of the epidemic can be neglected without affecting the final size distribution. Despite the importance of such an argument, its presence behind many results is often not clearly stated or hidden in references to previous results. In this paper, we reanalyse Ludwigs result, highlighting some of the conditions under which it does not hold and providing a general framework to examine the differences between the continuous-time and the discrete-generation process.
Evolution | 2013
Katrina A. Lythgoe; Lorenzo Pellis; Christophe Fraser
An important component of pathogen evolution at the population level is evolution within hosts. Unless evolution within hosts is very slow compared to the duration of infection, the composition of pathogen genotypes within a host is likely to change during the course of an infection, thus altering the composition of genotypes available for transmission as infection progresses. We develop a nested modeling approach that allows us to follow the evolution of pathogens at the epidemiological level by explicitly considering within‐host evolutionary dynamics of multiple competing strains and the timing of transmission. We use the framework to investigate the impact of short‐sighted within‐host evolution on the evolution of virulence of human immunodeficiency virus (HIV), and find that the topology of the within‐host adaptive landscape determines how virulence evolves at the epidemiological level. If viral reproduction rates increase significantly during the course of infection, the viral population will evolve a high level of virulence even though this will reduce the transmission potential of the virus. However, if reproduction rates increase more modestly, as data suggest, our model predicts that HIV virulence will be only marginally higher than the level that maximizes the transmission potential of the virus.
Epidemics | 2015
Julia R. Gog; Lorenzo Pellis; J. L. N. Wood; Angela R. McLean; Nimalan Arinaminpathy; James O. Lloyd-Smith
The population dynamics of infectious disease is a mature field in terms of theory and to some extent, application. However for microparasites, the theory and application of models of the dynamics within a single infected host is still an open field. Further, connecting across the scales--from cellular to host level, to population level--has potential to vastly improve our understanding of pathogen dynamics and evolution. Here, we highlight seven challenges in the following areas: transmission bottlenecks, heterogeneity within host, dynamic fitness landscapes within hosts, making use of next-generation sequencing data, capturing superinfection and when and how to model more than two scales.