Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas A. House is active.

Publication


Featured researches published by Thomas A. House.


Interdisciplinary Perspectives on Infectious Diseases | 2011

Networks and the epidemiology of infectious disease

Leon Danon; Ashley P. Ford; Thomas A. House; Chris P. Jewell; Matthew James Keeling; Gareth O. Roberts; Joshua V. Ross; Matthew C. Vernon

The science of networks has revolutionised research into the dynamics of interacting elements. It could be argued that epidemiology in particular has embraced the potential of network theory more than any other discipline. Here we review the growing body of research concerning the spread of infectious diseases on networks, focusing on the interplay between network theory and epidemiology. The review is split into four main sections, which examine: the types of network relevant to epidemiology; the multitude of ways these networks can be characterised; the statistical methods that can be applied to infer the epidemiological parameters on a realised network; and finally simulation and analytical methods to determine epidemic dynamics on a given network. Given the breadth of areas covered and the ever-expanding number of publications, a comprehensive review of all work is impossible. Instead, we provide a personalised overview into the areas of network epidemiology that have seen the greatest progress in recent years or have the greatest potential to provide novel insights. As such, considerable importance is placed on analytical approaches and statistical methods which are both rapidly expanding fields. Throughout this review we restrict our attention to epidemiological issues.


Science | 2015

Modeling infectious disease dynamics in the complex landscape of global health

Hans Heesterbeek; Roy M. Anderson; Viggo Andreasen; Shweta Bansal; Daniela De Angelis; Chris Dye; Ken T. D. Eames; W. John Edmunds; Simon D. W. Frost; Sebastian Funk; T. Déirdre Hollingsworth; Thomas A. House; Valerie Isham; Petra Klepac; Justin Lessler; James O. Lloyd-Smith; C. Jessica E. Metcalf; Denis Mollison; Lorenzo Pellis; Juliet R. C. Pulliam; M. G. Roberts; Cécile Viboud

Mathematical modeling of infectious diseases The spread of infectious diseases can be unpredictable. With the emergence of antibiotic resistance and worrying new viruses, and with ambitious plans for global eradication of polio and the elimination of malaria, the stakes have never been higher. Anticipation and measurement of the multiple factors involved in infectious disease can be greatly assisted by mathematical methods. In particular, modeling techniques can help to compensate for imperfect knowledge, gathered from large populations and under difficult prevailing circumstances. Heesterbeek et al. review the development of mathematical models used in epidemiology and how these can be harnessed to develop successful control strategies and inform public health policy. Science, this issue 10.1126/science.aaa4339 BACKGROUND Despite many notable successes in prevention and control, infectious diseases remain an enormous threat to human and animal health. The ecological and evolutionary dynamics of pathogens play out on a wide range of interconnected temporal, organizational, and spatial scales that span hours to months, cells to ecosystems, and local to global spread. Some pathogens are directly transmitted between individuals of a single species, whereas others circulate among multiple hosts, need arthropod vectors, or persist in environmental reservoirs. Many factors, including increasing antimicrobial resistance, human connectivity, population growth, urbanization, environmental and land-use change, as well as changing human behavior, present global challenges for prevention and control. Faced with this complexity, mathematical models offer valuable tools for understanding epidemiological patterns and for developing and evaluating evidence for decision-making in global health. ADVANCES During the past 50 years, the study of infectious disease dynamics has matured into a rich interdisciplinary field at the intersection of mathematics, epidemiology, ecology, evolutionary biology, immunology, sociology, and public health. The practical challenges range from establishing appropriate data collection to managing increasingly large volumes of information. The theoretical challenges require fundamental study of many-layered, nonlinear systems in which infections evolve and spread and where key events can be governed by unpredictable pathogen biology or human behavior. In this Review, we start with an examination of real-time outbreak response using the West African Ebola epidemic as an example. Here, the challenges range from underreporting of cases and deaths, and missing information on the impact of control measures to understanding human responses. The possibility of future zoonoses tests our ability to detect anomalous outbreaks and to estimate human-to-human transmissibility against a backdrop of ongoing zoonotic spillover while also assessing the risk of more dangerous strains evolving. Increased understanding of the dynamics of infections in food webs and ecosystems where host and nonhost species interact is key. Simultaneous multispecies infections are increasingly recognized as a notable public health burden, yet our understanding of how different species of pathogens interact within hosts is rudimentary. Pathogen genomics has become an essential tool for drawing inferences about evolution and transmission and, here but also in general, heterogeneity is the major challenge. Methods that depart from simplistic assumptions about random mixing are yielding new insights into the dynamics of transmission and control. There is rapid growth in estimation of model parameters from mismatched or incomplete data, and in contrasting model output with real-world observations. New data streams on social connectivity and behavior are being used, and combining data collected from very different sources and scales presents important challenges. All these mathematical endeavors have the potential to feed into public health policy and, indeed, an increasingly wide range of models is being used to support infectious disease control, elimination, and eradication efforts. OUTLOOK Mathematical modeling has the potential to probe the apparently intractable complexity of infectious disease dynamics. Coupled to continuous dialogue between decision-makers and the multidisciplinary infectious disease community, and by drawing on new data streams, mathematical models can lay bare mechanisms of transmission and indicate new approaches to prevention and control that help to shape national and international public health policy. Modeling for public health. Policy questions define the model’s purpose. Initial model design is based on current scientific understanding and the available relevant data. Model validation and fit to disease data may require further adaptation; sensitivity and uncertainty analysis can point to requirements for collection of additional specific data. Cycles of model testing and analysis thus lead to policy advice and improved scientific understanding. Despite some notable successes in the control of infectious diseases, transmissible pathogens still pose an enormous threat to human and animal health. The ecological and evolutionary dynamics of infections play out on a wide range of interconnected temporal, organizational, and spatial scales, which span hours to months, cells to ecosystems, and local to global spread. Moreover, some pathogens are directly transmitted between individuals of a single species, whereas others circulate among multiple hosts, need arthropod vectors, or can survive in environmental reservoirs. Many factors, including increasing antimicrobial resistance, increased human connectivity and changeable human behavior, elevate prevention and control from matters of national policy to international challenge. In the face of this complexity, mathematical models offer valuable tools for synthesizing information to understand epidemiological patterns, and for developing quantitative evidence for decision-making in global health.


Journal of the Royal Society Interface | 2011

Insights from unifying modern approximations to infections on networks

Thomas A. House; Matthew James Keeling

Networks are increasingly central to modern science owing to their ability to conceptualize multiple interacting components of a complex system. As a specific example of this, understanding the implications of contact network structure for the transmission of infectious diseases remains a key issue in epidemiology. Three broad approaches to this problem exist: explicit simulation; derivation of exact results for special networks; and dynamical approximations. This paper focuses on the last of these approaches, and makes two main contributions. Firstly, formal mathematical links are demonstrated between several prima facie unrelated dynamical approximations. And secondly, these links are used to derive two novel dynamical models for network epidemiology, which are compared against explicit stochastic simulation. The success of these new models provides improved understanding about the interaction of network structure and transmission dynamics.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Individual identity and movement networks for disease metapopulations

Matthew James Keeling; Leon Danon; Matthew C. Vernon; Thomas A. House

The theory of networks has had a huge impact in both the physical and life sciences, shaping our understanding of the interaction between multiple elements in complex systems. In particular, networks have been extensively used in predicting the spread of infectious diseases where individuals, or populations of individuals, interact with a limited set of others—defining the network through which the disease can spread. Here for such disease models we consider three assumptions for capturing the network of movements between populations, and focus on two applied problems supported by detailed data from Great Britain: the commuter movement of workers between local areas (wards) and the permanent movement of cattle between farms. For such metapopulation networks, we show that the identity of individuals responsible for making network connections can have a significant impact on the infection dynamics, with clear implications for detailed public health and veterinary applications.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Impact of spatial clustering on disease transmission and optimal control

Michael J. Tildesley; Thomas A. House; Mark Bruhn; Ross J. Curry; Maggie O'Neil; Justine Allpress; Gary Smith; Matthew James Keeling

Spatial heterogeneities and spatial separation of hosts are often seen as key factors when developing accurate predictive models of the spread of pathogens. The question we address in this paper is how coarse the resolution of the spatial data can be for a model to be a useful tool for informing control policies. We examine this problem using the specific case of foot-and-mouth disease spreading between farms using the formulation developed during the 2001 epidemic in the United Kingdom. We show that, if our model is carefully parameterized to match epidemic behavior, then using aggregate county-scale data from the United States is sufficient to closely determine optimal control measures (specifically ring culling). This result also holds when the approach is extended to theoretical distributions of farms where the spatial clustering can be manipulated to extremes. We have therefore shown that, although spatial structure can be critically important in allowing us to predict the emergent population-scale behavior from a knowledge of the individual-level dynamics, for this specific applied question, such structure is mostly subsumed in the parameterization allowing us to make policy predictions in the absence of high-quality spatial information. We believe that this approach will be of considerable benefit across a range of disciplines where data are only available at intermediate spatial scales.


Epidemics | 2015

Eight challenges for network epidemic models.

Lorenzo Pellis; Frank Ball; Shweta Bansal; Ken T. D. Eames; Thomas A. House; Valerie Isham; Pieter Trapman

Networks offer a fertile framework for studying the spread of infection in human and animal populations. However, owing to the inherent high-dimensionality of networks themselves, modelling transmission through networks is mathematically and computationally challenging. Even the simplest network epidemic models present unanswered questions. Attempts to improve the practical usefulness of network models by including realistic features of contact networks and of host-pathogen biology (e.g. waning immunity) have made some progress, but robust analytical results remain scarce. A more general theory is needed to understand the impact of network structure on the dynamics and control of infection. Here we identify a set of challenges that provide scope for active research in the field of network epidemic models.


PLOS Computational Biology | 2010

The Impact of Contact Tracing in Clustered Populations

Thomas A. House; Matthew James Keeling

The tracing of potentially infectious contacts has become an important part of the control strategy for many infectious diseases, from early cases of novel infections to endemic sexually transmitted infections. Here, we make use of mathematical models to consider the case of partner notification for sexually transmitted infection, however these models are sufficiently simple to allow more general conclusions to be drawn. We show that, when contact network structure is considered in addition to contact tracing, standard “mass action” models are generally inadequate. To consider the impact of mutual contacts (specifically clustering) we develop an improvement to existing pairwise network models, which we use to demonstrate that ceteris paribus, clustering improves the efficacy of contact tracing for a large region of parameter space. This result is sometimes reversed, however, for the case of highly effective contact tracing. We also develop stochastic simulations for comparison, using simple re-wiring methods that allow the generation of appropriate comparator networks. In this way we contribute to the general theory of network-based interventions against infectious disease.


Bellman Prize in Mathematical Biosciences | 2008

Deterministic epidemic models with explicit household structure.

Thomas A. House; Matthew James Keeling

For a wide range of airborne infectious diseases, transmission within the family or household is a key mechanism for the spread and persistence of infection. In general, household-based transmission is relatively strong but only involves a limited number of individuals in contact with each infectious person. In contrast, transmission outside the household can be characterised by many contacts but a lower probability of transmission. Here we develop a relatively simple dynamical model that captures these two transmission regimes. We compare the dynamics of such models for a range of household sizes, whilst constraining all models to have equal early growth rate so that all models fit to the same early incidence observations of an epidemic. Finally we consider the use of prophylactic vaccination, responsive vaccination, or antivirals to combat epidemic spread and focus on whether it is optimal to target controls at entire households or to treat individuals independently.


Journal of the Royal Society Interface | 2012

Social encounter networks: collective properties and disease transmission

Leon Danon; Thomas A. House; Jonathan M. Read; Matthew James Keeling

A fundamental challenge of modern infectious disease epidemiology is to quantify the networks of social and physical contacts through which transmission can occur. Understanding the collective properties of these interactions is critical for both accurate prediction of the spread of infection and determining optimal control measures. However, even the basic properties of such networks are poorly quantified, forcing predictions to be made based on strong assumptions concerning network structure. Here, we report on the results of a large-scale survey of social encounters mainly conducted in Great Britain. First, we characterize the distribution of contacts, which possesses a lognormal body and a power-law tail with an exponent of −2.45; we provide a plausible mechanistic model that captures this form. Analysis of the high level of local clustering of contacts reveals additional structure within the network, implying that social contacts are degree assortative. Finally, we describe the epidemiological implications of this local network structure: these contradict the usual predictions from networks with heavy-tailed degree distributions and contain public-health messages about control. Our findings help us to determine the types of realistic network structure that should be assumed in future population level studies of infection transmission, leading to better interpretations of epidemiological data and more appropriate policy decisions.


Proceedings. Biological sciences / The Royal Society. 2011;278(1719):2753-60. | 2011

Modelling the impact of local reactive school closures on critical care provision during an influenza pandemic

Thomas A. House; Marc Baguelin; Albert Jan van Hoek; Peter White; Zia Sadique; Ken T. D. Eames; Jonathan M. Read; Niel Hens; Alessia Melegaro; W. John Edmunds; Matthew James Keeling

Despite the fact that the 2009 H1N1 pandemic influenza strain was less severe than had been feared, both seasonal epidemics of influenza-like-illness and future influenza pandemics have the potential to place a serious burden on health services. The closure of schools has been postulated as a means of reducing transmission between children and hence reducing the number of cases at the peak of an epidemic; this is supported by the marked reduction in cases during school holidays observed across the world during the 2009 pandemic. However, a national policy of long-duration school closures could have severe economic costs. Reactive short-duration closure of schools in regions where health services are close to capacity offers a potential compromise, but it is unclear over what spatial scale and time frame closures would need to be made to be effective. Here, using detailed geographical information for England, we assess how localized school closures could alleviate the burden on hospital intensive care units (ICUs) that are reaching capacity. We show that, for a range of epidemiologically plausible assumptions, considerable local coordination of school closures is needed to achieve a substantial reduction in the number of hospitals where capacity is exceeded at the peak of the epidemic. The heterogeneity in demand per hospital ICU bed means that even widespread school closures are unlikely to have an impact on whether demand will exceed capacity for many hospitals. These results support the UK decision not to use localized school closures as a control mechanism, but have far wider international public-health implications. The spatial heterogeneities in both population density and hospital capacity that give rise to our results exist in many developed countries, while our model assumptions are sufficiently general to cover a wide range of pathogens. This leads us to believe that when a pandemic has severe implications for ICU capacity, only widespread school closures (with their associated costs and organizational challenges) are sufficient to mitigate the burden on the worst-affected hospitals.

Collaboration


Dive into the Thomas A. House's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge