Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Loretta C. Johnson is active.

Publication


Featured researches published by Loretta C. Johnson.


Nature | 2002

Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra

Robert B. McKane; Loretta C. Johnson; Gaius R. Shaver; Knute J. Nadelhoffer; Edward B. Rastetter; Brian Fry; Anne Giblin; Knut Kielland; Bonnie L. Kwiatkowski; James A. Laundre; Georgia Murray

Ecologists have long been intrigued by the ways co-occurring species divide limiting resources. Such resource partitioning, or niche differentiation, may promote species diversity by reducing competition. Although resource partitioning is an important determinant of species diversity and composition in animal communities, its importance in structuring plant communities has been difficult to resolve. This is due mainly to difficulties in studying how plants compete for belowground resources. Here we provide evidence from a 15N-tracer field experiment showing that plant species in a nitrogen-limited, arctic tundra community were differentiated in timing, depth and chemical form of nitrogen uptake, and that species dominance was strongly correlated with uptake of the most available soil nitrogen forms. That is, the most productive species used the most abundant nitrogen forms, and less productive species used less abundant forms. To our knowledge, this is the first documentation that the composition of a plant community is related to partitioning of differentially available forms of a single limiting resource.


BioScience | 1999

The Keystone Role of Bison in North American Tallgrass Prairie

Alan K. Knapp; John M. Blair; John M. Briggs; Scott L. Collins; Loretta C. Johnson; E. Gene Towne

Your use of the JSTOR archive indicates your acceptance of JSTORs Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTORs Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.


Biogeochemistry | 1999

Nitrogen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation

David U. Hooper; Loretta C. Johnson

We investigated the relationship between plant nitrogen limitation and water availability in dryland ecosystems. We tested the hypothesis that at lower levels of annual precipitation, aboveground net primary productivity (ANPP) is limited primarily by water whereas at higher levels of precipitation, it is limited primarily by nitrogen. Using a literature survey of fertilization experiments in arid, semi-arid, and subhumid ecosystems, we investigated the response of ANPP to nitrogen addition as a function of variation in precipitation across geographic gradients, as well as across year-to-year variation in precipitation within sites. We used four different indices to assess the degree of N limitation: (1) Absolute Increase of plant production in response to fertilization (the slope of ANPP vs. amount of added N at different levels of annual precipitation); (2) Relative Response (the percent increase in fertilized over control ANPP at different levels of N addition); (3) Fertilizer Use Efficiency (FUE, the absolute gain in productivity per amount of fertilizer N), and (4) Maximum Response (the greatest absolute increase in ANPP at saturating levels of N addition). Relative Response to fertilization did not significantly increase with increasing precipitation either across the geographic gradient or across year-to-year variation within sites. Nor did the Maximum Response to fertilization increase with increasing precipitation across the geographic gradient. On the other hand, there was a significant increase in the Absolute Increase and FUE indices with both geographical and temporal variation in precipitation. Together, these results indicate that there is not necessarily a shift of primary limitation from water to N across the geographic water availability gradient. Instead, our results support the hypothesis of co-limitation. The apparently contradictory results from the four indices of N limitation can best be explained by an integration of plant ecophysiological, community, and ecosystem mechanisms whereby plants are co-limited by multiple resources, species shifts occur in response to changing resource levels, and nitrogen and water availability are tightly linked through biogeochemical feedbacks.


Ecological Monographs | 1998

BIOMASS AND CO2 FLUX IN WET SEDGE TUNDRAS: RESPONSES TO NUTRIENTS, TEMPERATURE, AND LIGHT

Gaius R. Shaver; Loretta C. Johnson; D. H. Cades; G. Murray; J. A. Laundre; Edward B. Rastetter; Knute J. Nadelhoffer; Anne E. Giblin

The aim of this research was to analyze the effects of increased N or P availability, increased air temperature, and decreased light intensity on wet sedge tundra in northern Alaska. Nutrient availability was increased for 6–9 growing seasons, using N and P fertilizers in factorial experiments at three separate field sites. Air temperature was increased for six growing seasons, using plastic greenhouses at two sites, both with and without N + P fertilizer. Light intensity (photosynthetically active photon flux) was reduced by 50% for six growing seasons at the same two sites, using optically neutral shade cloth. Responses of wet sedge tundra to these treatments were documented as changes in vegetation biomass, N mass, and P mass, changes in whole-system CO2 fluxes, and changes in species composition and leaf-level photosynthesis. Biomass, N mass, and P mass accumulation were all strongly P limited, and biomass and N mass accumulation also responded significantly to N addition with a small N × P interaction. Greenhouse warming alone had no significant effect on biomass, N mass, or P mass, although there was a consistent trend toward increased mass in the greenhouse treatments. There was a significant negative interaction between the greenhouse treatment and the N + P fertilizer treatment, i.e., the effect of the two treatments combined was to reduce biomass and N mass significantly below that of the fertilizer treatment only. Six years of shading had no significant effect on biomass, N mass, or P mass. Ecosystem CO2 fluxes included net ecosystem production (NEP; net CO2 flux), ecosystem respiration (RE, including both plant and soil respiration), and gross ecosystem production (GEP; gross ecosystem photosynthesis). All three fluxes responded to the fertilizer treatments in a pattern similar to the responses of biomass, N mass, and P mass, i.e., with a strong P response and a small, but significant, N response and N × P interaction. The greenhouse treatment also increased all three fluxes, but the greenhouse plus N + P treatment caused a significant decrease in NEP because RE increased more than GEP in this treatment. The shade treatment increased both GEP and RE, but had no effect on NEP. Most of the changes in CO2 fluxes per unit area of ground were due to changes in plant biomass, although there were additional, smaller treatment effects on CO2 fluxes per unit biomass, per unit N mass, and per unit P mass. The vegetation was composed mainly of rhizomatous sedges and rushes, but changes in species composition may have contributed to the changes in vegetation nutrient content and ecosystem-level CO2 fluxes. Carex cordorrhiza, the species with the highest nutrient concentrations in its tissues in control plots, was also the species with the greatest increase in abundance in the fertilized plots. In comparison with Eriophorum angustifolium, another species that was abundant in control plots, C. cordorrhiza had higher photosynthetic rates per unit leaf mass. Leaf photosynthesis and respiration of C. cordorrhiza also increased with fertilizer treatment, whereas they decreased or remained constant in E. angustifolium. The responses of these wet sedge tundras were similar to those of a nearby moist tussock tundra site that received an identical series of experiments. The main difference was the dominant P limitation in wet sedge tundra vs. N limitation in moist tussock tundra. Both tundras were relatively unresponsive to the increased air temperatures in the greenhouses but showed a strong negative interaction between the greenhouse and fertilizer treatments. New data from this study suggest that the negative interaction may be driven by a large increase in respiration in warmed fertilized plots, perhaps in relation to large increases in P concentration.


Oecologia | 1996

15N natural abundances and N use by tundra plants

Knute J. Nadelhoffer; Gaius R. Shaver; Brian Fry; Anne E. Giblin; Loretta C. Johnson; Robert B. McKane

Plant species collected from tundra ecosystems located along a north-south transect from central Alaska to the north coast of Alaska showed large and consistent differences in 15N natural abundances. Foliar δ15N values varied by about 10% among species within each of two moist tussock tundra sites. Differences in 15N contents among species or plant groups were consistent across moist tussock tundra at several other sites and across five other tundra types at a single site. Ericaceous species had the lowest δ15N values, ranging between about −8 to −6‰. Foliar 15N contents increased progressively in birch, willows and sedges to maximum δ15N values of about +2‰ in sedges. Soil 15N contents in tundra ecosystems at our two most intensively studied sites increased with depth and δ15N values were usually higher for soils than for plants. Isotopic fractionations during soil N transformations and possibly during plant N uptake could lead to observed differences in 15N contents among plant species and between plants and soils. Patterns of variation in 15N content among species indicate that tundra plants acquire nitrogen in extremely nutrient-poor environments by competitive partitioning of the overall N pool. Differences in plant N sources, rooting depth, mycorrhizal associations, forms of N taken up, and other factors controlling plant N uptake are possible causes of variations in δ15N values of tundra plant species.


Ecosystems | 2002

Assessing the Rate, Mechanisms, and Consequences of the Conversion of Tallgrass Prairie to Juniperus virginiana Forest

John M. Briggs; Greg A. Hoch; Loretta C. Johnson

We assessed the determinants and consequences of the expansion of Juniperus virginiana L. (red cedar) populations into central US grasslands using historical aerial photos and field measurements of forest extent, tree growth, fire-induced mortality, and responses in herbaceous species diversity and productivity. Photos from northeast Kansas dating back to 1956 indicate that native tallgrass prairie can be converted to closed-canopy red cedar forest in as little as 40 years (a 2.3% increase in forest cover per year). Mean tree density in 21 forested sites ranged from 130 to 3500 trees/ha, with most sites at more than 800 trees/ha. In younger stands, maximum growth rates of individual red cedar trees exceeded 20 cm/y in height. Land management practices were critical to the establishment and growth of red cedar forest. Grazing reduced the fuel loads by more than 30% in tallgrass prairie. Based on measurements of mortality for more than 1800 red cedar trees, fire-induced mortality in grazed areas averaged 31.6% versus more than 90% at ungrazed sites. When tallgrass prairie was converted to red cedar forest, herbaceous species diversity and productivity were drastically reduced, and most grassland species were virtually eliminated. Consequently, community structure shifted from dominance by herbaceous C4 species to evergreen woody C3 species; this shift is likely to be accompanied by alterations in carbon storage and other ecosystem processes in a relatively short time period. Here we present a conceptual model that integrates the ecological and socioeconomic factors that underlie the conversion of grassland to red cedar forest.


Ecology | 2005

ENVIRONMENTAL CONSTRAINTS ON A GLOBAL RELATIONSHIP AMONG LEAF AND ROOT TRAITS OF GRASSES

Joseph M. Craine; William G. Lee; William J. Bond; Richard J. Williams; Loretta C. Johnson

Uncertainties regarding the relationships between leaf and root traits have impeded an integrated understanding of plant evolution and the efficient parameterization of ecosystem models. We measured key root and leaf traits of grasses from 77 sites in four grassland regions of the world (New Zealand, Australia, South Africa, North America). Within each region, the relationships among leaf traits paralleled those among root traits. Plants with low root or leaf N concentrations had roots or leaves with high tissue density, high lignin concentrations, low amount of mass that was soluble in a neutral detergent solution, large diameter/thickness, and were less enriched in 15N. Yet, whether comparing plants within a region or among all four regions, there was little relationship between root traits and leaf traits, except for a positive relationship between root and leaf N concentration and between root and leaf δ15N. At the global scale, factors such as soil freezing and the type of nutrient limitation appear ...


Ecological Applications | 1997

PREDICTING GROSS PRIMARY PRODUCTIVITY IN TERRESTRIAL ECOSYSTEMS

Mathew Williams; Edward B. Rastetter; David N. Fernandes; Michael L. Goulden; Gaius R. Shaver; Loretta C. Johnson

Our goal was to construct a simple, highly aggregated model, driven by easily available data sets, that accurately predicted terrestrial gross primary productivity (GPP; carboxylation plus oxygenation) in diverse environments and ecosystems. Our starting point was a fine-scale, multilayer model of half-hourly canopy processes that has been parametrized for Harvard Forest, Massachusetts. Over varied growing season conditions, this fine-scale model predicted hourly carbon and latent energy fluxes that were in good agreement with data from eddy covariance studies. Using an heuristic process, we derived a simple aggregated set of equations operating on cumulative or average values of the most sensitive driving variables (leaf area index, mean foliar N concentration, canopy height, average daily temperature and temperature range, atmospheric transmittance, latitude, day of year, atmospheric CO2 concentration, and an index of soil moisture). We calibrated the aggregated model to provide estimates of GPP similar to those of the fine-scale model across a wide range of these driving variables. Our calibration across this broad range of conditions captured 96% of fine-scale model behavior, but was computationally many orders of magnitude faster. We then tested the assumptions we had made in generating the aggregated model by applying it in different ecosystems. Using the same parameter values derived for Harvard Forest, the aggregated model made sound predictions of GPP for wet-sedge tundra in the Arctic under a variety of experimental manipulations, and also for a range of forest types across the OTTER (Oregon Transect Ecosystem Research) transect in Oregon, running from coastal Sitka spruce to high-plateau mountain juniper.


Oecologia | 1996

Effects of drainage and temperature on carbon balance of tussock tundra micrososms

Loretta C. Johnson; Gaius R. Shaver; Anne E. Giblin; Knute J. Nadelhoffer; E. R. Rastetter; J. A. Laundre; G. Murray

We examined the importance of temperature (7°C or 15°C) and soil moisture regime (saturated or field capacity) on the carbon (C) balance of arctic tussock tundra microcosms (intact blocks of soil and vegetation) in growth chambers over an 81-day simulated growing season. We measured gaseous CO2 exchanges, methane (CH4) emissions, and dissolved C losses on intact blocks of tussock (Eriophorum vaginatum) and intertussock (moss-dominated). We hypothesized that under increased temperature and/or enhanced drainage, C losses from ecosystem respiration (CO2 respired by plants and heterotrophs) would exceed gains from gross photosynthesis causing tussock tundra to become a net source of C to the atmosphere. The field capacity moisture regime caused a decrease in net CO2 storage (NEP) in tussock tundra micrososms. This resulted from a stimulation of ecosystem respiration (probably mostly microbial) with enhanced drainage, rather than a decrease in gross photosynthesis. Elevated temperature alone had no effect on NEP because CO2 losses from increased ecosystem respiration at elevated temperature were compensated by increased CO2 uptake (gross photosynthesis). Although CO2 losses from ecosystem respiration were primarily limited by drainage, CH4 emissions, in contrast, were dependent on temperature. Furthermore, substantial dissolved C losses, especially organic C, and important microhabitat differences must be considered in estimating C balance for the tussock tundra system. As much as ∼ 20% of total C fixed in photosynthesis was lost as dissolved organic C. Tussocks stored ∼ 2x more C and emitted 5x more methane than intertussocks. In spite of the limitations of this microcosm experiment, this study has further elucidated the critical role of soil moisture regime and dissolved C losses in regulating net C balance of arctic tussock tundra.


Ecology | 2000

Plant carbon-nutrient interactions control CO2 exchange in Alaskan wet sedge tundra ecosystems.

Loretta C. Johnson; Gaius R. Shaver; Deb H. Cades; Edward B. Rastetter; Knute J. Nadelhoffer; Anne E. Giblin; J. A. Laundre; Amanda Stanley

We explored the long-term (8-yr) effects of separate field manipulations of temperature and nutrient availability on carbon balance in wet sedge tundra near the Arctic Long Term Ecological Research (LTER) site at Toolik Lake, Alaska. Our goals were (1) to assess the relative importance of chronic warming (with field greenhouses) and increased N and P availability (by fertilization) in controlling gross ecosystem photosynthesis, ecosystem respiration (plant plus heterotrophic respiration), and ultimately ecosystem C balance; and (2) to attempt to partition ecosystem responses to these treatments between plant and soil contributions. We present results of the effects of these manipulations on whole-system CO2 exchange over seasonal and diel cycles, and on nonrhizosphere soil microbial respiration using in situ soil incubations. Wet sedge control plots were, at best, a weak sink for carbon even during the peak growing season. Chronic nutrient additions of N + P shifted wet sedge carbon balance to a strong sink throughout the growing season; nutrient availability regulated seasonal and diel CO2 exchanges in these two wet sedge ecosystems. The N + P plots had significantly higher photosynthesis and ecosystem respiration in spite of the unanticipated effect of ∼30% reduction in thaw depth in these plots, apparently due to a twofold increase in litter accumulation insulating the soil surface and/or possible shading from greater plant cover in these plots. These results highlighted the prevailing importance of nutrient–carbon interactions in controlling ecosystem processes and ecosystem C balance in arctic tundra. In contrast, warming had only subtle effects on CO2 exchanges. Increased temperatures in the warmed plots had little effect on instantaneous rates of photosynthesis or respiration. After eight years of chronic warming with an average 5.6°C higher air temperature over the growing season and a 40–200% increase in net N mineralization rate, it was surprising that warming did not have more profound effects on CO2 exchange and plant cover. If there were an effect of warming, increased temperatures might cause early canopy development and lengthen the growing season, rather than directly affect instantaneous rates of photosynthesis. Based on photosynthesis–light response curves developed from the early- and late-season diel measurements, we demonstrated that the main effect of warming was to accelerate the development of the canopy early in the season. By midseason, however, there were no significant differences in C exchange between warmed and control plots. Perhaps the most important and novel result emerging from this study is the prevailing importance of plant C exchange, not soil processes, in driving ecosystem C fluxes. First, nonrhizosphere soil microbial respiration as estimated CO2 flux from in situ soil incubations was a small fraction of whole-system respiration and did not vary among treatments. This suggests that anaerobic conditions or some other factor may limit soil microbial respiration more than do temperature or nutrients. Second, plant respiration contributed most (90%) of the ecosystem respiration in fertilized plots. This unanticipated and large contribution from plant respiration highlights the critical importance of understanding the response of plant respiration to global environmental change in these wet sedge ecosystems.

Collaboration


Dive into the Loretta C. Johnson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara G. Baer

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Gaius R. Shaver

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brian R. Maricle

Fort Hays State University

View shared research outputs
Top Co-Authors

Avatar

Donghai Wang

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Ke Zhang

Kansas State University

View shared research outputs
Top Co-Authors

Avatar

Anne E. Giblin

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. A. Laundre

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar

Edward B. Rastetter

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge