Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lori Battelli is active.

Publication


Featured researches published by Lori Battelli.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2012

Single-walled carbon nanotube-induced mitotic disruption

Linda M. Sargent; Ann F. Hubbs; Shih-Houng Young; Michael L. Kashon; Cerasela Zoica Dinu; Jeffrey L. Salisbury; S.A. Benkovic; David T. Lowry; A.R. Murray; Elena R. Kisin; Katelyn J. Siegrist; Lori Battelli; John T Mastovich; Jacqueline Sturgeon; Kristin L. Bunker; Anna A. Shvedova; Steve H. Reynolds

Carbon nanotubes were among the earliest products of nanotechnology and have many potential applications in medicine, electronics, and manufacturing. The low density, small size, and biological persistence of carbon nanotubes create challenges for exposure control and monitoring and make respiratory exposures to workers likely. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to 24, 48 and 96 μg/cm(2) single-walled carbon nanotubes (SWCNT). To investigate mitotic spindle aberrations at concentrations anticipated in exposed workers, primary and immortalized human airway epithelial cells were exposed to SWCNT for 24-72 h at doses equivalent to 20 weeks of exposure at the Permissible Exposure Limit for particulates not otherwise regulated. We have now demonstrated fragmented centrosomes, disrupted mitotic spindles and aneuploid chromosome number at those doses. The data further demonstrated multipolar mitotic spindles comprised 95% of the disrupted mitoses. The increased multipolar mitotic spindles were associated with an increased number of cells in the G2 phase of mitosis, indicating a mitotic checkpoint response. Nanotubes were observed in association with mitotic spindle microtubules, the centrosomes and condensed chromatin in cells exposed to 0.024, 0.24, 2.4 and 24 μg/cm(2) SWCNT. Three-dimensional reconstructions showed carbon nanotubes within the centrosome structure. The lower doses did not cause cytotoxicity or reduction in colony formation after 24h; however, after three days, significant cytotoxicity was observed in the SWCNT-exposed cells. Colony formation assays showed an increased proliferation seven days after exposure. Our results show significant disruption of the mitotic spindle by SWCNT at occupationally relevant doses. The increased proliferation that was observed in carbon nanotube-exposed cells indicates a greater potential to pass the genetic damage to daughter cells. Disruption of the centrosome is common in many solid tumors including lung cancer. The resulting aneuploidy is an early event in the progression of many cancers, suggesting that it may play a role in both tumorigenesis and tumor progression. These results suggest caution should be used in the handling and processing of carbon nanotubes.


Toxicology | 2010

Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes

Dale W. Porter; Ann F. Hubbs; Robert R. Mercer; Nianqiang Wu; Michael G. Wolfarth; Krishnan Sriram; Stephen S. Leonard; Lori Battelli; Diane Schwegler-Berry; Sherry Friend; Michael E. Andrew; Bean T. Chen; Shuji Tsuruoka; Morinobu Endo; Vincent Castranova

Carbon nanotubes (CNT) come in a variety of types, but one of the most common forms is multi-walled carbon nanotubes (MWCNT). MWCNT have potential applications in many diverse commercial processes, and thus human exposures are considered to be likely. In order to investigate the pulmonary toxicity of MWCNT, we conducted an in vivo dose-response and time course study of MWCNT in mice in order to assess their ability to induce pulmonary inflammation, damage, and fibrosis using doses that approximate estimated human occupational exposures. MWCNT were dispersed in dispersion medium (DM) and male C57BL/6J mice (7 weeks old) received either DM (vehicle control), 10, 20, 40 or 80mug MWCNT by aspiration exposure. At 1, 7, 28 and 56 days post-exposure, MWCNT-induced pulmonary toxicity was investigated. Bronchoalveolar lavage (BAL) studies determined pulmonary inflammation and damage was dose-dependent and peaked at 7 days post-exposure. By 56 days post-exposure, pulmonary inflammation and damage markers were returning to control levels, except for the 40mug MWCNT dose, which was still significantly higher than vehicle control. Histopathological studies determined that MWCNT exposure caused rapid development of pulmonary fibrosis by 7 days post-exposure, that granulomatous inflammation persisted throughout the 56-day post-exposure period, and also demonstrated that MWCNT can reach the pleura after pulmonary exposure. In summary, the data reported here indicate that MWCNT exposure rapidly produces significant adverse health outcomes in the lung. Furthermore, the observation that MWCNT reach the pleura after aspiration exposure indicates that more extensive investigations are needed to fully assess if pleural penetration results in any adverse health outcomes.


Particle and Fibre Toxicology | 2010

Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes

Robert R. Mercer; Ann F. Hubbs; James F. Scabilloni; Liying Wang; Lori Battelli; Diane Schwegler-Berry; Vincent Castranova; Dale W. Porter

BackgroundMulti-walled carbon nanotubes (MWCNT) are new manufactured nanomaterials with a wide spectrum of commercial applications. The durability and fiber-like dimensions (mean length 3.9 μm long × 49 nm diameter) of MWCNT suggest that these fibers may migrate to and have toxicity within the pleural region. To address whether the pleura received a significant and persistent exposure, C57BL/6J mice were exposed by pharyngeal aspiration to 10, 20, 40 and 80 μg MWCNT or vehicle and the distribution of MWCNT penetrations determined at 1, 7, 28 and 56 days after exposure. Following lung fixation and sectioning, morphometric methods were used to determine the distribution of MWCNT and the number of MWCNT fiber penetrations of three barriers: alveolar epithelium (alveolar penetrations), the alveolar epithelium immediately adjacent to the pleura (subpleural tissue), and visceral pleural surface (intrapleural space).ResultsAt 1 day 18%, 81.6% and 0.6% of the MWCNT lung burden was in the airway, the alveolar, and the subpleural regions, respectively. There was an initial, high density of penetrations into the subpleural tissue and the intrapleural space one day following aspiration which appeared to decrease due to clearance by alveolar macrophages and/or lymphatics by day 7. However, the density of penetrations increased to steady state levels in the subpleural tissue and intrapleural from day 28 - 56. At day 56 approximately 1 in every 400 fiber penetrations was in either the subpleural tissue or intrapleural space. Numerous penetrations into macrophages in the alveolar airspaces throughout the lungs were demonstrated at all times but are not included in the counts presented.ConclusionsThe results document that MWCNT penetrations of alveolar macrophages, the alveolar wall, and visceral pleura are both frequent and sustained. In addition, the findings demonstrate the need to investigate the chronic toxicity of MWCNT at these sites.


Journal of Toxicology and Environmental Health | 2003

Efficacy of a Technique for Exposing the Mouse Lung to Particles Aspirated from the Pharynx

G. V. S. Rao; Sally S. Tinkle; David N. Weissman; James M. Antonini; Michael L. Kashon; Rebecca Salmen; Lori Battelli; Patsy Willard; Ann F. Hubbs; Mark D. Hoover

Recent studies have demonstrated that the mouse lung can be exposed to soluble antigens by aspiration of these antigens from the pharynx. This simple technique avoids the trauma associated with intratracheal instillation. In this study, the pharyngeal aspiration technique was validated for exposing the mouse lung to respirable particles. Using respirable fluorescent amine-modified polystyrene latex beads and beryllium oxide particles, we investigated the localization of aspirated particles within the lung and the relationship between the amount of material placed in the pharynx and the amount deposited in the lung. For exposure, mice were anesthetized with isoflurane in a bell jar, placed on a slant board, and the tongue was gently held in full extension while a 50-µl suspension of particles was pipetted onto the base of the tongue. Tongue restraint was maintained until at least two breaths were completed. Less than a minute after exposure, all mice awoke from anesthesia without visible sequela. There were no significant differences in particle distribution between the left and right side of the lung (p = .16). Particles were widely disseminated in a peribronchiolar pattern within the alveolar region. There was a linear and significant correlation (r 2 = .99) between the amount administered and the amount deposited in the lung. In beryllium-exposed mice, measurable lung beryllium was 77.5 to 88.2% of the administered beryllium. These findings demonstrate that following aspiration of pharyngeal deposited particles, exposures to the deep lung are repeatable, technically simple, and highly correlated to the administered dose.


Particle and Fibre Toxicology | 2011

Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes

Robert R. Mercer; Ann F. Hubbs; James F. Scabilloni; Liying Wang; Lori Battelli; Sherri Friend; Vincent Castranova; Dale W. Porter

BackgroundMulti-walled carbon nanotubes (MWCNTs) are new manufactured nanomaterials with a wide spectrum of commercial applications. To address the hypothesis that MWCNTs cause persistent pulmonary pathology, C57BL/6J mice were exposed by pharyngeal aspiration to 10, 20, 40 or 80 μg of MWCNTs (mean dimensions of 3.9 μm × 49 nm) or vehicle. Lungs were preserved at 1, 7, 28 and 56 days post- exposure to determine the potential regions and target cells for impact by MWCNT lung burden. Morphometric measurement of Sirius Red staining was used to assess the connective tissue response.ResultsAt 56 days post-exposure, 68.7 ± 3.9, 7.5 ± 1.9 and 22.0 ± 5.1 percent (mean ± SE, N = 8) of the MWCNT lung burden were in alveolar macrophages, alveolar tissue and granulomatous lesions, respectively. The subpleural tissues contained 1.6% of the MWCNT lung burden. No MWCNTs were found in the airways at 7, 28 or 56 days after aspiration The connective tissue in the alveolar interstitium demonstrated a progressive increase in thickness over time in the 80 μg exposure group (0.12 ± 0.01, 0.12 ± 0.01, 0.16 ± 0.01 and 0.19 ± 0.01 μm for 1, 7, 28 and 56 days post-exposure (mean ± SE, N = 8)). Dose-response determined at 56 days post-exposure for the average thickness of connective tissue in alveolar septa was 0.11 ± 0.01, 0.14 ± .02, 0.14 ± 0.01, 0.16 ± 0.01 and 0.19 ± 0.01 μm (mean ± SE, N = 8) for vehicle, 10, 20, 40 and 80 μg dose groups, respectively.ConclusionsThe distribution of lung burden was predominately within alveolar macrophages with approximately 8% delivery to the alveolar septa, and a smaller but potentially significant burden to the subpleural tissues. Despite the relatively low fraction of the lung burden being delivered to the alveolar tissue, the average thickness of connective tissue in the alveolar septa was increased over vehicle control by 45% in the 40 μg and 73% in the 80 μg exposure groups. The results demonstrate that MWCNTs have the potential to produce a progressive, fibrotic response in the alveolar tissues of the lungs. However, the increases in connective tissue per μg dose of MWCNTs to the interstitium are significantly less than those previously found for single-walled carbon nanotubes (SWCNTs).


Nanotoxicology | 2012

Acute pulmonary dose–responses to inhaled multi-walled carbon nanotubes

Dale W. Porter; Ann F. Hubbs; Bean T. Chen; Walter McKinney; Robert R. Mercer; Michael G. Wolfarth; Lori Battelli; Nianqiang Wu; Krishnan Sriram; Stephen S. Leonard; Michael E. Andrew; Patsy Willard; Shuji Tsuruoka; Morinobu Endo; Takayuki Tsukada; Fuminori Munekane; David G. Frazer; Vincent Castranova

Abstract This study investigated the in vivo pulmonary toxicity of inhaled multi-walled carbon nanotubes (MWCNT). Mice-inhaled aerosolized MWCNT (10 mg/m3, 5 h/day) for 2, 4, 8 or 12 days. MWCNT lung burden was linearly related to exposure duration. MWCNT-induced pulmonary inflammation was assessed by determining whole lung lavage (WLL) polymorphonuclear leukocytes (PMN). Lung cytotoxicity was assessed by WLL fluid LDH activities. WLL fluid albumin concentrations were determined as a marker of alveolar air–blood barrier integrity. These parameters significantly increased in MWCNT-exposed mice versus controls and were dose-dependent. Histopathologic alterations identified in the lung included (1) bronciolocentric inflammation, (2) bronchiolar epithelial hyperplasia and hypertrophy, (3) fibrosis, (4) vascular changes and (5) rare pleural penetration. MWCNT translocated to the lymph node where the deep paracortex was expanded after 8 or 12 days. Acute inhalation of MWCNT induced dose-dependent pulmonary inflammation and damage with rapid development of pulmonary fibrosis, and also demonstrated that MWCNT can reach the pleura after inhalation exposure.


Environmental and Molecular Mutagenesis | 2009

Induction of aneuploidy by single-walled carbon nanotubes

Linda M. Sargent; Anna A. Shvedova; Ann F. Hubbs; Jeffrey L. Salisbury; Stanley A. Benkovic; Michael L. Kashon; David T. Lowry; A.R. Murray; Elena R. Kisin; Sherri Friend; Kimberly McKinstry; Lori Battelli; Steve H. Reynolds

Engineered carbon nanotubes are newly emerging manufactured particles with potential applications in electronics, computers, aerospace, and medicine. The low density and small size of these biologically persistent particles makes respiratory exposures to workers likely during the production or use of commercial products. The narrow diameter and great length of single‐walled carbon nanotubes (SWCNT) suggest the potential to interact with critical biological structures. To examine the potential of nanotubes to induce genetic damage in normal lung cells, cultured primary and immortalized human airway epithelial cells were exposed to SWCNT or a positive control, vanadium pentoxide. After 24 hr of exposure to either SWCNT or vanadium pentoxide, fragmented centrosomes, multiple mitotic spindle poles, anaphase bridges, and aneuploid chromosome number were observed. Confocal microscopy demonstrated nanotubes within the nucleus that were in association with cellular and mitotic tubulin as well as the chromatin. Our results are the first to report disruption of the mitotic spindle by SWCNT. The nanotube bundles are similar to the size of microtubules that form the mitotic spindle and may be incorporated into the mitotic spindle apparatus. Environ. Mol. Mutagen., 2009. Published 2009 Wiley‐Liss, Inc.


Particle and Fibre Toxicology | 2013

Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology

Aaron Erdely; Matthew M. Dahm; Bean T. Chen; Patti C. Zeidler-Erdely; Joseph E. Fernback; M. Eileen Birch; Douglas E. Evans; Michael L. Kashon; James A. Deddens; Tracy Hulderman; Suzan Bilgesu; Lori Battelli; Diane Schwegler-Berry; Howard Leonard; Walter McKinney; David G. Frazer; James M. Antonini; Dale W. Porter; Vincent Castranova; Mary K. Schubauer-Berigan

BackgroundDosimetry for toxicology studies involving carbon nanotubes (CNT) is challenging because of a lack of detailed occupational exposure assessments. Therefore, exposure assessment findings, measuring the mass concentration of elemental carbon from personal breathing zone (PBZ) samples, from 8 U.S.-based multi-walled CNT (MWCNT) manufacturers and users were extrapolated to results of an inhalation study in mice.ResultsUpon analysis, an inhalable elemental carbon mass concentration arithmetic mean of 10.6 μg/m3 (geometric mean 4.21 μg/m3) was found among workers exposed to MWCNT. The concentration equates to a deposited dose of approximately 4.07 μg/d in a human, equivalent to 2 ng/d in the mouse. For MWCNT inhalation, mice were exposed for 19 d with daily depositions of 1970 ng (equivalent to 1000 d of a human exposure; cumulative 76 yr), 197 ng (100 d; 7.6 yr), and 19.7 ng (10 d; 0.76 yr) and harvested at 0, 3, 28, and 84 d post-exposure to assess pulmonary toxicity. The high dose showed cytotoxicity and inflammation that persisted through 84 d after exposure. The middle dose had no polymorphonuclear cell influx with transient cytotoxicity. The low dose was associated with a low grade inflammatory response measured by changes in mRNA expression. Increased inflammatory proteins were present in the lavage fluid at the high and middle dose through 28 d post-exposure. Pathology, including epithelial hyperplasia and peribronchiolar inflammation, was only noted at the high dose.ConclusionThese findings showed a limited pulmonary inflammatory potential of MWCNT at levels corresponding to the average inhalable elemental carbon concentrations observed in U.S.-based CNT facilities and estimates suggest considerable years of exposure are necessary for significant pathology to occur at that level.


Toxicologic Pathology | 2008

Respiratory toxicologic pathology of inhaled diacetyl in sprague-dawley rats.

Ann F. Hubbs; William T. Goldsmith; Michael L. Kashon; David G. Frazer; Robert R. Mercer; Lori Battelli; Gregory J. Kullman; Diane Schwegler-Berry; Sherri Friend; Vincent Castranova

Inhalation of butter flavoring vapors by food manufacturing workers causes an emerging lung disease clinically resembling bronchiolitis obliterans. Diacetyl, an α-diketone, is a major component of these vapors. In rats, we investigated the toxicity of inhaled diacetyl at concentrations of up to 365 ppm (time weighted average), either as six-hour continuous exposures or as four brief, intense exposures over six hours. A separate group inhaled a single pulse of ~1800 ppm diacetyl (92.9 ppm six-hour average). Rats were necropsied 18 to 20 hours after exposure. Diacetyl inhalation caused epithelial necrosis and suppurative to fibrinosuppurative inflammation in the nose, larynx, trachea, and bronchi. Bronchi were affected at diacetyl concentrations of 294.6 ppm or greater; the trachea and larynx were affected at diacetyl concentrations of 224 ppm or greater. Both pulsed and continuous exposure patterns caused epithelial injury. The nose had the greatest sensitivity to diacetyl. Ultrastructural changes in the tracheal epithelium included whorling and dilation of the rough endoplasmic reticulum, chromatin clumping beneath the nuclear membrane, vacuolation, increased inter-cellular space and foci of denuded basement membrane. Edema and hemorrhage extended into the lamina propria. These findings are consistent with the conclusion that inhaled diacetyl is a respiratory hazard.


International Journal of Molecular Sciences | 2014

Effect of Fiber Length on Carbon Nanotube-Induced Fibrogenesis

Amruta Manke; Sudjit Luanpitpong; Chenbo Dong; Liying Wang; Xiaoqing He; Lori Battelli; Raymond Derk; Todd A. Stueckle; Dale W. Porter; Tina Sager; Honglei Gou; Cerasela Zoica Dinu; Nianqiang Wu; Robert R. Mercer; Yon Rojanasakul

Given their extremely small size and light weight, carbon nanotubes (CNTs) can be readily inhaled by human lungs resulting in increased rates of pulmonary disorders, particularly fibrosis. Although the fibrogenic potential of CNTs is well established, there is a lack of consensus regarding the contribution of physicochemical attributes of CNTs on the underlying fibrotic outcome. We designed an experimentally validated in vitro fibroblast culture model aimed at investigating the effect of fiber length on single-walled CNT (SWCNT)-induced pulmonary fibrosis. The fibrogenic response to short and long SWCNTs was assessed via oxidative stress generation, collagen expression and transforming growth factor-beta (TGF-β) production as potential fibrosis biomarkers. Long SWCNTs were significantly more potent than short SWCNTs in terms of reactive oxygen species (ROS) response, collagen production and TGF-β release. Furthermore, our finding on the length-dependent in vitro fibrogenic response was validated by the in vivo lung fibrosis outcome, thus supporting the predictive value of the in vitro model. Our results also demonstrated the key role of ROS in SWCNT-induced collagen expression and TGF-β activation, indicating the potential mechanisms of length-dependent SWCNT-induced fibrosis. Together, our study provides new evidence for the role of fiber length in SWCNT-induced lung fibrosis and offers a rapid cell-based assay for fibrogenicity testing of nanomaterials with the ability to predict pulmonary fibrogenic response in vivo.

Collaboration


Dive into the Lori Battelli's collaboration.

Top Co-Authors

Avatar

Ann F. Hubbs

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Dale W. Porter

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael L. Kashon

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Robert R. Mercer

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Diane Schwegler-Berry

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Sherri Friend

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Walter McKinney

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Michael E. Andrew

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Michael G. Wolfarth

National Institute for Occupational Safety and Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge