Lori Cuyugan
Translational Genomics Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lori Cuyugan.
Neurobiology of Aging | 2015
Shobana Sekar; Jacquelyn McDonald; Lori Cuyugan; Jessica Aldrich; Ahmet Kurdoglu; Jonathan Adkins; Geidy Serrano; Thomas G. Beach; David Craig; Jonathan Valla; Eric M. Reiman; Winnie S. Liang
Alzheimers disease (AD) is characterized by deficits in cerebral metabolic rates of glucose in the posterior cingulate (PC) and precuneus in AD subjects, and in APOEε4 carriers, decades before the onset of measureable cognitive deficits. However, the cellular and molecular basis of this phenotype remains to be clarified. Given the roles of astrocytes in energy storage and brain immunity, we sought to characterize the transcriptome of AD PC astrocytes. Cells were laser capture microdissected from AD (n = 10) and healthy elderly control (n = 10) subjects for RNA sequencing. We generated >5.22 billion reads and compared sequencing data between controls and AD patients. We identified differentially expressed mitochondria-related genes including TRMT61B, FASTKD2, and NDUFA4L2, and using pathway and weighted gene coexpression analyses, we identified differentially expressed immune response genes. A number of these genes, including CLU, C3, and CD74, have been implicated in beta amyloid generation or clearance. These data provide key insights into astrocyte-specific contributions to AD, and we present this data set as a publicly available resource.
Molecular Genetics & Genomic Medicine | 2015
Aleksandar Sekulic; Winnie S. Liang; Waibhav Tembe; Tyler Izatt; Semyon Kruglyak; Jeffrey Kiefer; Lori Cuyugan; Victoria Zismann; Christophe Legendre; Mark R. Pittelkow; John J. Gohmann; Fernando R. De Castro; Jeffrey M. Trent; John D. Carpten; David Craig; Timothy K. McDaniel
Matching molecularly targeted therapies with cancer subtype‐specific gene mutations is revolutionizing oncology care. However, for rare cancers this approach is problematic due to the often poor understanding of the diseases natural history and phenotypic heterogeneity, making treatment of these cancers a particularly unmet medical need in clinical oncology. Advanced Sézary syndrome (SS), an aggressive, exceedingly rare variant of cutaneous T‐cell lymphoma (CTCL) is a prototypical example of a rare cancer. Through whole genome and RNA sequencing (RNA‐seq) of a SS patients tumor we discovered a highly expressed gene fusion between CTLA4 (cytotoxic T lymphocyte antigen 4) and CD28 (cluster of differentiation 28), predicting a novel stimulatory molecule on the surface of tumor T cells. Treatment with the CTLA4 inhibitor ipilimumab resulted in a rapid clinical response. Our findings suggest a novel driver mechanism for SS, and cancer in general, and exemplify an emerging model of cancer treatment using exploratory genomic analysis to identify a personally targeted treatment option when conventional therapies are exhausted.
Cancer Research | 2015
Amit Dipak Amin; Soumya S. Rajan; Winnie S. Liang; Praechompoo Pongtornpipat; Matthew J. Groysman; Edgar O. Tapia; Tara L. Peters; Lori Cuyugan; Jonathan Adkins; Lisa M. Rimsza; Yves A. Lussier; Soham D. Puvvada; Jonathan H. Schatz
The anaplastic lymphoma kinase (ALK) is chromosomally rearranged in a subset of certain cancers, including 2% to 7% of non-small cell lung cancers (NSCLC) and ∼70% of anaplastic large cell lymphomas (ALCL). The ALK kinase inhibitors crizotinib and ceritinib are approved for relapsed ALK(+) NSCLC, but acquired resistance to these drugs limits median progression-free survival on average to ∼10 months. Kinase domain mutations are detectable in 25% to 37% of resistant NSCLC samples, with activation of bypass signaling pathways detected frequently with or without concurrent ALK mutations. Here we report that, in contrast to NSCLC cells, drug-resistant ALCL cells show no evidence of bypassing ALK by activating alternate signaling pathways. Instead, drug resistance selected in this setting reflects upregulation of ALK itself. Notably, in the absence of crizotinib or ceritinib, we found that increased ALK signaling rapidly arrested or killed cells, allowing a prolonged control of drug-resistant tumors in vivo with the administration of discontinuous rather than continuous regimens of drug dosing. Furthermore, even when drug resistance mutations were detected in the kinase domain, overexpression of the mutant ALK was toxic to tumor cells. We confirmed these findings derived from human ALCL cells in murine pro-B cells that were transformed to cytokine independence by ectopic expression of an activated NPM-ALK fusion oncoprotein. In summary, our results show how ALK activation functions as a double-edged sword for tumor cell viability, with potential therapeutic implications.
Scientific Reports | 2016
Mitesh J. Borad; Jan B. Egan; Rachel M. Condjella; Winnie S. Liang; Rafael Fonseca; Nicole R. Ritacca; Ann E. McCullough; Michael T. Barrett; Katherine S. Hunt; Mia D. Champion; Maitray D. Patel; Scott W. Young; Alvin C. Silva; Thai H. Ho; Thorvardur R. Halfdanarson; Robert R. McWilliams; Konstantinos N. Lazaridis; Ramesh K. Ramanathan; Angela Baker; Jessica Aldrich; Ahmet Kurdoglu; Tyler Izatt; Alexis Christoforides; Irene Cherni; Sara Nasser; Rebecca Reiman; Lori Cuyugan; Jacquelyn McDonald; Jonathan Adkins; Stephen D. Mastrian
DNA focused panel sequencing has been rapidly adopted to assess therapeutic targets in advanced/refractory cancer. Integrated Genomic Profiling (IGP) utilising DNA/RNA with tumour/normal comparisons in a Clinical Laboratory Improvement Amendments (CLIA) compliant setting enables a single assay to provide: therapeutic target prioritisation, novel target discovery/application and comprehensive germline assessment. A prospective study in 35 advanced/refractory cancer patients was conducted using CLIA-compliant IGP. Feasibility was assessed by estimating time to results (TTR), prioritising/assigning putative therapeutic targets, assessing drug access, ascertaining germline alterations, and assessing patient preferences/perspectives on data use/reporting. Therapeutic targets were identified using biointelligence/pathway analyses and interpreted by a Genomic Tumour Board. Seventy-five percent of cases harboured 1–3 therapeutically targetable mutations/case (median 79 mutations of potential functional significance/case). Median time to CLIA-validated results was 116 days with CLIA-validation of targets achieved in 21/22 patients. IGP directed treatment was instituted in 13 patients utilising on/off label FDA approved drugs (n = 9), clinical trials (n = 3) and single patient IND (n = 1). Preliminary clinical efficacy was noted in five patients (two partial response, three stable disease). Although barriers to broader application exist, including the need for wider availability of therapies, IGP in a CLIA-framework is feasible and valuable in selection/prioritisation of anti-cancer therapeutic targets.
Neurobiology of Aging | 2018
Diego Mastroeni; Jennifer Nolz; Shobana Sekar; Elaine Delvaux; Geidy Serrano; Lori Cuyugan; Winnie S. Liang; Thomas G. Beach; Joseph Rogers; Paul D. Coleman
Expression array data from dozens of laboratories, including our own, show significant changes in expression of many genes in Alzheimers disease (AD) patients compared with normal controls. These data typically rely on brain homogenates, and information about transcripts specific to microglia and other central nervous system (CNS) cell types, which far outnumber microglia-specific transcripts, is lost. We therefore used single-cell laser capture methods to assess the full range of microglia-specific expression changes that occur in different brain regions (substantia nigra and hippocampus CA1) and disease states (AD, Parkinsons disease, and normal controls). Two novel pathways, neuronal repair and viral processing were identified. Based on KEGG analysis (Kyoto Encyclopedia of Genes and Genomes, a collection of biological pathways), one of the most significant viruses was hepatitis B virus (HBV) (false discovery rate < 0.00000001). Immunohistochemical analysis using HBV-core antibody in HBV-positive control, amnestic mild cognitive impairment, and HBV-positive AD cases show increased HBV immunoreactivity as disease pathology increases. These results are the first, to our knowledge, to show regional differences in human microglia. In addition, these data reveal new functions for microglia and suggest a novel risk factor for AD.
Genome Research | 2017
Winnie S. Liang; William Hendricks; Jeffrey Kiefer; Jessica Schmidt; Shobana Sekar; John D. Carpten; David Craig; Jonathan Adkins; Lori Cuyugan; Zarko Manojlovic; Rebecca F. Halperin; Adrienne Helland; Sara Nasser; Christophe Legendre; Laurence H. Hurley; Karthigayini Sivaprakasam; Douglas B. Johnson; Holly Crandall; Victoria Zismann; Valerie Deluca; Jeeyun Lee; Aleksandar Sekulic; Charlotte E. Ariyan; Jeffrey A. Sosman; Jeffrey M. Trent
Genomic analyses of cutaneous melanoma (CM) have yielded biological and therapeutic insights, but understanding of non-ultraviolet (UV)-derived CMs remains limited. Deeper analysis of acral lentiginous melanoma (ALM), a rare sun-shielded melanoma subtype associated with worse survival than CM, is needed to delineate non-UV oncogenic mechanisms. We thus performed comprehensive genomic and transcriptomic analysis of 34 ALM patients. Unlike CM, somatic alterations were dominated by structural variation and absence of UV-derived mutation signatures. Only 38% of patients demonstrated driver BRAF/NRAS/NF1 mutations. In contrast with CM, we observed PAK1 copy gains in 15% of patients, and somatic TERT translocations, copy gains, and missense and promoter mutations, or germline events, in 41% of patients. We further show that in vitro TERT inhibition has cytotoxic effects on primary ALM cells. These findings provide insight into the role of TERT in ALM tumorigenesis and reveal preliminary evidence that TERT inhibition represents a potential therapeutic strategy in ALM.
Alzheimers & Dementia | 2018
Diego Mastroeni; Jennifer Nolz; Omar M. Khdour; Shobana Sekar; Elaine Delvaux; Lori Cuyugan; Winnie S. Liang; Sidney M. Hecht; Paul D. Coleman
Our laboratories have demonstrated that accumulation of oligomeric amyloid β (OAβ) in neurons is an essential step leading to OAβ‐mediated mitochondrial dysfunction.
Neurology Genetics | 2016
Adrienne Henderson-Smith; Jason J. Corneveaux; Matthew De Both; Lori Cuyugan; Winnie S. Liang; Matthew J. Huentelman; Charles H. Adler; Erika Driver-Dunckley; Thomas G. Beach; Travis Dunckley
Objective: We sought to determine the underlying cortical gene expression changes associated with Parkinson dementia using a next-generation RNA sequencing approach. Methods: In this study, we used RNA sequencing to evaluate differential gene expression and alternative splicing in the posterior cingulate cortex from neurologically normal control patients, patients with Parkinson disease, and patients with Parkinson disease with dementia. Results: Genes overexpressed in both disease states were involved with an immune response, whereas shared underexpressed genes functioned in signal transduction or as components of the cytoskeleton. Alternative splicing analysis produced a pattern of immune and RNA-processing disturbances. Conclusions: Genes with the greatest degree of differential expression did not overlap with genes exhibiting significant alternative splicing activity. Such variation indicates the importance of broadening expression studies to include exon-level changes because there can be significant differential splicing activity with potential structural consequences, a subtlety that is not detected when examining differential gene expression alone, or is underrepresented with probe-limited array technology.
Methods of Molecular Biology | 2018
Winnie S. Liang; Kristi Stephenson; Jonathan Adkins; Austin Christofferson; Adrienne Helland; Lori Cuyugan; Jonathan J. Keats
With the rapid evolution of genomics technologies over the past decade, whole genome sequencing (WGS) has become an increasingly accessible tool in biomedical research. WGS applications include analysis of genomic DNA from single individuals, multiple related family members, and tumor/normal samples from the same patient in the context of oncology. A number of different modalities are available for performing WGS; this chapter focuses on wet lab library construction procedures for complex short insert WGS libraries using the KAPA Hyper Prep Kit (Kapa Biosystems), and includes a discussion of appropriate quality control measures for sequencing on the Illumina HiSeq2000 platform. Additional modifications to the protocol for long insert WGS library construction, to assess structural alterations and copy number changes, are also described.
Cold Spring Harb Mol Case Stud | 2018
Winnie S. Liang; Christopher Dardis; Adrienne Helland; Shobana Sekar; Jonathan Adkins; Lori Cuyugan; Daniel Enriquez; Sara A. Byron; Andrew S Little
Chordoma is a rare, orphan cancer arising from embryonal precursors of bone. Surgery and radiotherapy (RT) provide excellent local control, often at the price of significant morbidity because of the structures involved and the need for relatively high doses of RT; however, recurrence remains high. Although our understanding of the genetic changes that occur in chordoma is evolving rapidly, this knowledge has yet to translate into treatments. We performed comprehensive DNA (paired tumor/normal whole-exome and shallow whole-genome) and RNA (tumor whole-transcriptome) next-generation sequencing analyses of archival sacral and clivus chordoma specimens. Incorporation of transcriptomic data enabled the identification of gene overexpression and expressed DNA alterations, thus providing additional support for potential therapeutic targets. In three patients, we identified alterations that may be amenable to off-label FDA-approved treatments for other tumor types. These alterations include FGFR1 overexpression (ponatinib, pazopanib) and copy-number duplication of CDK4 (palbociclib) and ERBB3 (gefitinib). In a third patient, germline DNA demonstrated predicted pathogenic changes in CHEK2 and ATM, which may have predisposed the patient to developing chordoma at a young age and may also be associated with potential sensitivity to PARP inhibitors because of homologous recombination repair deficiency. Last, in the fourth patient, a missense mutation in IGF1R was identified, suggesting potential activity for investigational anti-IGF1R strategies. Our findings demonstrate that chordoma patients present with aberrations in overlapping pathways. These results provide support for targeting the IGF1R/FGFR/EGFR and CDK4/6 pathways as treatment strategies for chordoma patients. This study underscores the value of comprehensive genomic and transcriptomic analysis in the development of rational, individualized treatment plans for chordoma.