Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan Adkins is active.

Publication


Featured researches published by Jonathan Adkins.


PLOS Genetics | 2014

Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma.

Mitesh J. Borad; Mia D. Champion; Jan B. Egan; Winnie S. Liang; Rafael Fonseca; Alan H. Bryce; Ann E. McCullough; Michael T. Barrett; Katherine S. Hunt; Maitray D. Patel; Scott W. Young; Joseph M. Collins; Alvin C. Silva; Rachel M. Condjella; Matthew S. Block; Robert R. McWilliams; Konstantinos N. Lazaridis; Eric W. Klee; Keith C. Bible; Pamela Jo Harris; Gavin R. Oliver; Jaysheel D. Bhavsar; Asha Nair; Sumit Middha; Yan W. Asmann; Jean Pierre A Kocher; Kimberly A. Schahl; Benjamin R. Kipp; Emily G. Barr Fritcher; Angela Baker

Advanced cholangiocarcinoma continues to harbor a difficult prognosis and therapeutic options have been limited. During the course of a clinical trial of whole genomic sequencing seeking druggable targets, we examined six patients with advanced cholangiocarcinoma. Integrated genome-wide and whole transcriptome sequence analyses were performed on tumors from six patients with advanced, sporadic intrahepatic cholangiocarcinoma (SIC) to identify potential therapeutically actionable events. Among the somatic events captured in our analysis, we uncovered two novel therapeutically relevant genomic contexts that when acted upon, resulted in preliminary evidence of anti-tumor activity. Genome-wide structural analysis of sequence data revealed recurrent translocation events involving the FGFR2 locus in three of six assessed patients. These observations and supporting evidence triggered the use of FGFR inhibitors in these patients. In one example, preliminary anti-tumor activity of pazopanib (in vitro FGFR2 IC50≈350 nM) was noted in a patient with an FGFR2-TACC3 fusion. After progression on pazopanib, the same patient also had stable disease on ponatinib, a pan-FGFR inhibitor (in vitro, FGFR2 IC50≈8 nM). In an independent non-FGFR2 translocation patient, exome and transcriptome analysis revealed an allele specific somatic nonsense mutation (E384X) in ERRFI1, a direct negative regulator of EGFR activation. Rapid and robust disease regression was noted in this ERRFI1 inactivated tumor when treated with erlotinib, an EGFR kinase inhibitor. FGFR2 fusions and ERRFI mutations may represent novel targets in sporadic intrahepatic cholangiocarcinoma and trials should be characterized in larger cohorts of patients with these aberrations.


Neurobiology of Aging | 2015

Alzheimer's disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes

Shobana Sekar; Jacquelyn McDonald; Lori Cuyugan; Jessica Aldrich; Ahmet Kurdoglu; Jonathan Adkins; Geidy Serrano; Thomas G. Beach; David Craig; Jonathan Valla; Eric M. Reiman; Winnie S. Liang

Alzheimers disease (AD) is characterized by deficits in cerebral metabolic rates of glucose in the posterior cingulate (PC) and precuneus in AD subjects, and in APOEε4 carriers, decades before the onset of measureable cognitive deficits. However, the cellular and molecular basis of this phenotype remains to be clarified. Given the roles of astrocytes in energy storage and brain immunity, we sought to characterize the transcriptome of AD PC astrocytes. Cells were laser capture microdissected from AD (n = 10) and healthy elderly control (n = 10) subjects for RNA sequencing. We generated >5.22 billion reads and compared sequencing data between controls and AD patients. We identified differentially expressed mitochondria-related genes including TRMT61B, FASTKD2, and NDUFA4L2, and using pathway and weighted gene coexpression analyses, we identified differentially expressed immune response genes. A number of these genes, including CLU, C3, and CD74, have been implicated in beta amyloid generation or clearance. These data provide key insights into astrocyte-specific contributions to AD, and we present this data set as a publicly available resource.


Cancer Research | 2015

Evidence Suggesting That Discontinuous Dosing of ALK Kinase Inhibitors May Prolong Control of ALK+ Tumors.

Amit Dipak Amin; Soumya S. Rajan; Winnie S. Liang; Praechompoo Pongtornpipat; Matthew J. Groysman; Edgar O. Tapia; Tara L. Peters; Lori Cuyugan; Jonathan Adkins; Lisa M. Rimsza; Yves A. Lussier; Soham D. Puvvada; Jonathan H. Schatz

The anaplastic lymphoma kinase (ALK) is chromosomally rearranged in a subset of certain cancers, including 2% to 7% of non-small cell lung cancers (NSCLC) and ∼70% of anaplastic large cell lymphomas (ALCL). The ALK kinase inhibitors crizotinib and ceritinib are approved for relapsed ALK(+) NSCLC, but acquired resistance to these drugs limits median progression-free survival on average to ∼10 months. Kinase domain mutations are detectable in 25% to 37% of resistant NSCLC samples, with activation of bypass signaling pathways detected frequently with or without concurrent ALK mutations. Here we report that, in contrast to NSCLC cells, drug-resistant ALCL cells show no evidence of bypassing ALK by activating alternate signaling pathways. Instead, drug resistance selected in this setting reflects upregulation of ALK itself. Notably, in the absence of crizotinib or ceritinib, we found that increased ALK signaling rapidly arrested or killed cells, allowing a prolonged control of drug-resistant tumors in vivo with the administration of discontinuous rather than continuous regimens of drug dosing. Furthermore, even when drug resistance mutations were detected in the kinase domain, overexpression of the mutant ALK was toxic to tumor cells. We confirmed these findings derived from human ALCL cells in murine pro-B cells that were transformed to cytokine independence by ectopic expression of an activated NPM-ALK fusion oncoprotein. In summary, our results show how ALK activation functions as a double-edged sword for tumor cell viability, with potential therapeutic implications.


Scientific Reports | 2016

Clinical Implementation of Integrated Genomic Profiling in Patients with Advanced Cancers

Mitesh J. Borad; Jan B. Egan; Rachel M. Condjella; Winnie S. Liang; Rafael Fonseca; Nicole R. Ritacca; Ann E. McCullough; Michael T. Barrett; Katherine S. Hunt; Mia D. Champion; Maitray D. Patel; Scott W. Young; Alvin C. Silva; Thai H. Ho; Thorvardur R. Halfdanarson; Robert R. McWilliams; Konstantinos N. Lazaridis; Ramesh K. Ramanathan; Angela Baker; Jessica Aldrich; Ahmet Kurdoglu; Tyler Izatt; Alexis Christoforides; Irene Cherni; Sara Nasser; Rebecca Reiman; Lori Cuyugan; Jacquelyn McDonald; Jonathan Adkins; Stephen D. Mastrian

DNA focused panel sequencing has been rapidly adopted to assess therapeutic targets in advanced/refractory cancer. Integrated Genomic Profiling (IGP) utilising DNA/RNA with tumour/normal comparisons in a Clinical Laboratory Improvement Amendments (CLIA) compliant setting enables a single assay to provide: therapeutic target prioritisation, novel target discovery/application and comprehensive germline assessment. A prospective study in 35 advanced/refractory cancer patients was conducted using CLIA-compliant IGP. Feasibility was assessed by estimating time to results (TTR), prioritising/assigning putative therapeutic targets, assessing drug access, ascertaining germline alterations, and assessing patient preferences/perspectives on data use/reporting. Therapeutic targets were identified using biointelligence/pathway analyses and interpreted by a Genomic Tumour Board. Seventy-five percent of cases harboured 1–3 therapeutically targetable mutations/case (median 79 mutations of potential functional significance/case). Median time to CLIA-validated results was 116 days with CLIA-validation of targets achieved in 21/22 patients. IGP directed treatment was instituted in 13 patients utilising on/off label FDA approved drugs (n = 9), clinical trials (n = 3) and single patient IND (n = 1). Preliminary clinical efficacy was noted in five patients (two partial response, three stable disease). Although barriers to broader application exist, including the need for wider availability of therapies, IGP in a CLIA-framework is feasible and valuable in selection/prioritisation of anti-cancer therapeutic targets.


Genome Research | 2017

Integrated genomic analyses reveal frequent TERT aberrations in acral melanoma.

Winnie S. Liang; William Hendricks; Jeffrey Kiefer; Jessica Schmidt; Shobana Sekar; John D. Carpten; David Craig; Jonathan Adkins; Lori Cuyugan; Zarko Manojlovic; Rebecca F. Halperin; Adrienne Helland; Sara Nasser; Christophe Legendre; Laurence H. Hurley; Karthigayini Sivaprakasam; Douglas B. Johnson; Holly Crandall; Victoria Zismann; Valerie Deluca; Jeeyun Lee; Aleksandar Sekulic; Charlotte E. Ariyan; Jeffrey A. Sosman; Jeffrey M. Trent

Genomic analyses of cutaneous melanoma (CM) have yielded biological and therapeutic insights, but understanding of non-ultraviolet (UV)-derived CMs remains limited. Deeper analysis of acral lentiginous melanoma (ALM), a rare sun-shielded melanoma subtype associated with worse survival than CM, is needed to delineate non-UV oncogenic mechanisms. We thus performed comprehensive genomic and transcriptomic analysis of 34 ALM patients. Unlike CM, somatic alterations were dominated by structural variation and absence of UV-derived mutation signatures. Only 38% of patients demonstrated driver BRAF/NRAS/NF1 mutations. In contrast with CM, we observed PAK1 copy gains in 15% of patients, and somatic TERT translocations, copy gains, and missense and promoter mutations, or germline events, in 41% of patients. We further show that in vitro TERT inhibition has cytotoxic effects on primary ALM cells. These findings provide insight into the role of TERT in ALM tumorigenesis and reveal preliminary evidence that TERT inhibition represents a potential therapeutic strategy in ALM.


Scientific Reports | 2016

A somatic reference standard for cancer genome sequencing

David Craig; Sara Nasser; Richard Corbett; Simon K. Chan; Lisa Murray; Christophe Legendre; Waibhav Tembe; Jonathan Adkins; Nancy Kim; Shukmei Wong; Angela Baker; Daniel Enriquez; Stephanie Pond; Erin Pleasance; Andrew J. Mungall; Richard A. Moore; Timothy K. McDaniel; Yussanne Ma; Steven J.M. Jones; Marco A. Marra; John D. Carpten; Winnie S. Liang

Large-scale multiplexed identification of somatic alterations in cancer has become feasible with next generation sequencing (NGS). However, calibration of NGS somatic analysis tools has been hampered by a lack of tumor/normal reference standards. We thus performed paired PCR-free whole genome sequencing of a matched metastatic melanoma cell line (COLO829) and normal across three lineages and across separate institutions, with independent library preparations, sequencing, and analysis. We generated mean mapped coverages of 99X for COLO829 and 103X for the paired normal across three institutions. Results were combined with previously generated data allowing for comparison to a fourth lineage on earlier NGS technology. Aggregate variant detection led to the identification of consensus variants, including key events that represent hallmark mutation types including amplified BRAF V600E, a CDK2NA small deletion, a 12 kb PTEN deletion, and a dinucleotide TERT promoter substitution. Overall, common events include >35,000 point mutations, 446 small insertion/deletions, and >6,000 genes affected by copy number changes. We present this reference to the community as an initial standard for enabling quantitative evaluation of somatic mutation pipelines across institutions.


bioRxiv | 2018

Joint analysis of matched tumor samples with varying tumor contents improves somatic variant calling in the absence of a germline sample

Rebecca F. Halperin; Winnie S. Liang; Sidharth Kulkarni; Erica Tassone; Jonathan Adkins; Daniel Enriquez; Nhan L. Tran; Nicole Hank; James Newell; Chinnappa D. Kodira; Ronald L. Korn; Michael E. Berens; Seungchan Kim; Sara A. Byron

Archival tumor samples represent a potential rich resource of annotated specimens for translational genomics research. However, standard variant calling approaches require a matched normal sample from the same individual, which is often not available in the retrospective setting, making it difficult to distinguish between true somatic variants and germline variants that are private to the individual. Archival sections often contain adjacent normal tissue, but this normal tissue can include infiltrating tumor cells. Comparative somatic variant callers are designed to exclude variants present in the normal sample, so a novel approach is required to leverage sequencing of adjacent normal tissue for somatic variant calling. Here we present LumosVar 2.0, a software package designed to jointly analyze multiple samples from the same patient. The approach is based on the concept that the allelic fraction of somatic variants, but not germline variants, would be reduced in samples with low tumor content. LumosVar 2.0 estimates allele specific copy number and tumor sample fractions from the data, and uses the model to determine expected allelic fractions for somatic and germline variants and classify variants accordingly. To evaluate using LumosVar 2.0 to jointly call somatic variants with tumor and adjacent normal samples, we used a glioblastoma dataset with matched high tumor content, low tumor content, and germline exome sequencing data (to define true somatic variants) available for each patient. We show that both sensitivity and positive predictive value are improved by analyzing the high tumor and low tumor samples jointly compared to analyzing the samples individually or compared to in-silico pooling of the two samples. Finally, we applied this approach to a set of breast and prostate archival tumor samples for which normal samples were not available for germline sequencing, but tumor blocks containing adjacent normal tissue were available for sequencing. Joint analysis using LumosVar 2.0 detected several variants, including known cancer hotspot mutations that were not detected by standard somatic variant calling tools using the adjacent normal as a reference. Together, these results demonstrate the potential utility of leveraging paired tissue samples to improve somatic variant calling when a constitutional DNA sample is not available.


Methods of Molecular Biology | 2018

Whole Genome Library Construction for Next Generation Sequencing.

Winnie S. Liang; Kristi Stephenson; Jonathan Adkins; Austin Christofferson; Adrienne Helland; Lori Cuyugan; Jonathan J. Keats

With the rapid evolution of genomics technologies over the past decade, whole genome sequencing (WGS) has become an increasingly accessible tool in biomedical research. WGS applications include analysis of genomic DNA from single individuals, multiple related family members, and tumor/normal samples from the same patient in the context of oncology. A number of different modalities are available for performing WGS; this chapter focuses on wet lab library construction procedures for complex short insert WGS libraries using the KAPA Hyper Prep Kit (Kapa Biosystems), and includes a discussion of appropriate quality control measures for sequencing on the Illumina HiSeq2000 platform. Additional modifications to the protocol for long insert WGS library construction, to assess structural alterations and copy number changes, are also described.


Cold Spring Harb Mol Case Stud | 2018

Identification of therapeutic targets in chordoma through comprehensive genomic and transcriptomic analyses

Winnie S. Liang; Christopher Dardis; Adrienne Helland; Shobana Sekar; Jonathan Adkins; Lori Cuyugan; Daniel Enriquez; Sara A. Byron; Andrew S Little

Chordoma is a rare, orphan cancer arising from embryonal precursors of bone. Surgery and radiotherapy (RT) provide excellent local control, often at the price of significant morbidity because of the structures involved and the need for relatively high doses of RT; however, recurrence remains high. Although our understanding of the genetic changes that occur in chordoma is evolving rapidly, this knowledge has yet to translate into treatments. We performed comprehensive DNA (paired tumor/normal whole-exome and shallow whole-genome) and RNA (tumor whole-transcriptome) next-generation sequencing analyses of archival sacral and clivus chordoma specimens. Incorporation of transcriptomic data enabled the identification of gene overexpression and expressed DNA alterations, thus providing additional support for potential therapeutic targets. In three patients, we identified alterations that may be amenable to off-label FDA-approved treatments for other tumor types. These alterations include FGFR1 overexpression (ponatinib, pazopanib) and copy-number duplication of CDK4 (palbociclib) and ERBB3 (gefitinib). In a third patient, germline DNA demonstrated predicted pathogenic changes in CHEK2 and ATM, which may have predisposed the patient to developing chordoma at a young age and may also be associated with potential sensitivity to PARP inhibitors because of homologous recombination repair deficiency. Last, in the fourth patient, a missense mutation in IGF1R was identified, suggesting potential activity for investigational anti-IGF1R strategies. Our findings demonstrate that chordoma patients present with aberrations in overlapping pathways. These results provide support for targeting the IGF1R/FGFR/EGFR and CDK4/6 pathways as treatment strategies for chordoma patients. This study underscores the value of comprehensive genomic and transcriptomic analysis in the development of rational, individualized treatment plans for chordoma.


Clinical Genitourinary Cancer | 2017

Comprehensive Genomic Analysis of Metastatic Mucinous Urethral Adenocarcinoma Guides Precision Oncology Treatment: Targetable EGFR Amplification Leading to Successful Treatment with Erlotinib

Alan H. Bryce; Mitesh J. Borad; Jan B. Egan; Rachel M. Condjella; Winnie S. Liang; Rafael Fonseca; Ann E. McCullough; Katherine S. Hunt; Nicole R. Ritacca; Michael T. Barrett; Maitray D. Patel; Scott W. Young; Alvin C. Silva; Thai H. Ho; Thorvardur R. Halfdanarson; John C. Cheville; Scott K. Swanson; Daniel E. Schneider; Robert R. McWilliams; Angela Baker; Jessica Aldrich; Ahmet Kurdoglu; Tyler Izatt; Alexis Christoforides; Irene Cherni; Sara Nasser; Rebecca Reiman; Lori Cuyugan; Jacquelyn McDonald; Jonathan Adkins

Alan H. Bryce1,3,4, Mitesh J. Borad1,3,4, Jan B. Egan4, Rachel M. Condjella3, Winnie S. Liang6, Rafael Fonseca1,3,4, Ann E. McCullough7, Katherine S. Hunt1, Nicole R. Ritacca3, Michael T. Barrett3,6, Maitray D. Patel8, Scott W. Young8, Alvin C. Silva8, Thai H. Ho1,3,4, Thorvardur R. Halfdanarson1,3,4, Melissa L. Stanton7, John Cheville5, Scott Swanson2, Daniel E. Schneider2, Robert R. McWilliams4,9, Angela Baker6, Jessica Aldrich6, Ahmet Kurdoglu6, Tyler Izatt6, Alexis Christoforides6, Irene Cherni6, Sara Nasser6, Rebecca Reiman6, Lori Cuyugan6, Jacquelyn McDonald6, Jonathan Adkins6, Stephen D. Mastrian6, Daniel D. Von Hoff6, David W. Craig6, A. Keith Stewart1,3,4, John D. Carpten6 1Division of Hematology/Oncology

Collaboration


Dive into the Jonathan Adkins's collaboration.

Top Co-Authors

Avatar

Winnie S. Liang

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Lori Cuyugan

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jessica Aldrich

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Adrienne Helland

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

David Craig

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sara Nasser

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ahmet Kurdoglu

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

John D. Carpten

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Jonathan J. Keats

Translational Genomics Research Institute

View shared research outputs
Top Co-Authors

Avatar

Shobana Sekar

Translational Genomics Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge