Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lori F. Gentile is active.

Publication


Featured researches published by Lori F. Gentile.


Journal of Trauma-injury Infection and Critical Care | 2012

Persistent inflammation and immunosuppression: A common syndrome and new horizon for surgical intensive care

Lori F. Gentile; Alex G. Cuenca; Philip A. Efron; Darwin N. Ang; Azra Bihorac; Bruce A. McKinley; Lyle L. Moldawer; Frederick A. Moore

ABSTRACT Surgical intensive care unit (ICU) stay of longer than 10 days is often described by the experienced intensivist as a “complicated clinical course” and is frequently attributed to persistent immune dysfunction. “Systemic inflammatory response syndrome” (SIRS) followed by “compensatory anti-inflammatory response syndrome” (CARS) is a conceptual framework to explain the immunologic trajectory that ICU patients with severe sepsis, trauma, or emergency surgery for abdominal infection often traverse, but the causes, mechanisms, and reasons for persistent immune dysfunction remain unexplained. Often involving multiple-organ failure (MOF) and death, improvements in surgical intensive care have altered its incidence, phenotype, and frequency and have increased the number of patients who survive initial sepsis or surgical events and progress to a persistent inflammation, immunosuppression, and catabolism syndrome (PICS). Often observed, but rarely reversible, these patients may survive to transfer to a long-term care facility only to return to the ICU, but rarely to self-sufficiency. We propose that PICS is the dominant pathophysiology and phenotype that has replaced late MOF and prolongs surgical ICU stay, usually with poor outcome. This review details the evolving epidemiology of MOF, the clinical presentation of PICS, and our understanding of how persistent inflammation and immunosuppression define the pathobiology of prolonged intensive care. Therapy for PICS will involve innovative interventions for immune system rebalance and nutritional support to regain physical function and well-being.


Journal of Trauma-injury Infection and Critical Care | 2014

Persistent Inflammation, Immunosuppression and Catabolism Syndrome after Severe Blunt Trauma

Erin L. Vanzant; Cecilia M. Lopez; Tezcan Ozrazgat-Baslanti; Ricardo Ungaro; Ruth Davis; Alex G. Cuenca; Lori F. Gentile; Dina C. Nacionales; Angela Cuenca; Azra Bihorac; Christiaan Leeuwenburgh; Jennifer Lanz; Henry V. Baker; Bruce A. McKinley; Lyle L. Moldawer; Frederick A. Moore; Philip A. Efron

BACKGROUND We recently proffered that a new syndrome persistent inflammation, immunosuppression, and catabolism syndrome (PICS) has replaced late multiple-organ failure as a predominant phenotype of chronic critical illness. Our goal was to validate this by determining whether severely injured trauma patients with complicated outcomes have evidence of PICS at the genomic level. METHODS We performed a secondary analysis of the Inflammation and Host Response to Injury database of adults with severe blunt trauma. Patients were classified into complicated, intermediate, and uncomplicated clinical trajectories. Existing genomic microarray data were compared between cohorts using Ingenuity Pathways Analysis. Epidemiologic data and outcomes were also analyzed between cohorts on admission, Day 7, and Day 14. RESULTS Complicated patients were older, were sicker, and required increased ventilator days compared with the intermediate/uncomplicated patients. They also had persistent leukocytosis as well as low lymphocyte and albumin levels compared with uncomplicated patients. Total white blood cell leukocyte analysis in complicated patients showed that overall genome-wide expression patterns and those patterns on Days 7 and 14 were more aberrant from control subjects than were patterns from uncomplicated patients. Complicated patients also had significant down-regulation of adaptive immunity and up-regulation of inflammatory genes on Days 7 and 14 (vs. magnitude in fold change compared with control and in magnitude compared with uncomplicated patients). On Day 7, complicated patients had significant changes in functional pathways involved in the suppression of myeloid cell differentiation, increased inflammation, decreased chemotaxis, and defective innate immunity compared with uncomplicated patients and controls. Subset analysis of monocyte, neutrophil, and T-cells supported these findings. CONCLUSION Genomic analysis of patients with complicated clinical outcomes exhibit persistent genomic expression changes consistent with defects in the adaptive immune response and increased inflammation. Clinical data showed persistent inflammation, immunosuppression, and protein depletion. Overall, the data support the hypothesis that patients with complicated clinical outcomes are exhibiting PICS. LEVEL OF EVIDENCE Epidemiologic study, level III.


Critical Care Medicine | 2013

Development of a genomic metric that can be rapidly used to predict clinical outcome in severely injured trauma patients.

Alex G. Cuenca; Lori F. Gentile; M. Cecilia Lopez; Ricardo Ungaro; Huazhi Liu; Wenzhong Xiao; Junhee Seok; Michael Mindrinos; Darwin N. Ang; Tezcan Ozrazgat Baslanti; Azra Bihorac; Philip A. Efron; Joseph Cuschieri; H. Shaw Warren; Ronald G. Tompkins; Ronald V. Maier; Henry V. Baker; Lyle L. Moldawer

Objective:Many patients have complicated recoveries following severe trauma due to the development of organ injury. Physiological and anatomical prognosticators have had limited success in predicting clinical trajectories. We report on the development and retrospective validation of a simple genomic composite score that can be rapidly used to predict clinical outcomes. Design:Retrospective cohort study. Setting:Multi-institutional level 1 trauma centers. Patients:Data were collected from 167 severely traumatized (injury severity score >15) adult (18–55 yr) patients. Methods:Microarray-derived genomic data obtained from 167 severely traumatized patients over 28 days were assessed for differences in messenger RNA abundance among individuals with different clinical trajectories. Once a set of genes was identified based on differences in expression over the entire study period, messenger RNA abundance from these subjects obtained in the first 24 hours was analyzed in a blinded fashion using a rapid multiplex platform, and genomic data reduced to a single metric. Results:From the existing genomic dataset, we identified 63 genes whose leukocyte expression differed between an uncomplicated and complicated clinical outcome over 28 days. Using a multiplex approach that can quantitate messenger RNA abundance in less than 12 hours, we reassessed total messenger RNA abundance from the first 24 hours after trauma and reduced the genomic data to a single composite score using the difference from reference. This composite score showed good discriminatory capacity to distinguish patients with a complicated outcome (area under a receiver–operator curve, 0.811; p <0.001). This was significantly better than the predictive power of either Acute Physiology and Chronic Health Evaluation II or new injury severity score scoring systems. Conclusions:A rapid genomic composite score obtained in the first 24 hours after trauma can retrospectively identify trauma patients who are likely to develop complicated clinical trajectories. A novel platform is described in which this genomic score can be obtained within 12 hours of blood collection, making it available for clinical decision making.


Critical Care Medicine | 2017

Sepsis Pathophysiology, Chronic Critical Illness, and Persistent Inflammation-immunosuppression and Catabolism Syndrome

Juan C. Mira; Lori F. Gentile; Brittany Mathias; Philip A. Efron; Scott C. Brakenridge; Alicia M. Mohr; Frederick A. Moore; Lyle L. Moldawer

Objectives: To provide an appraisal of the evolving paradigms in the pathophysiology of sepsis and propose the evolution of a new phenotype of critically ill patients, its potential underlying mechanism, and its implications for the future of sepsis management and research. Design: Literature search using PubMed, MEDLINE, EMBASE, and Google Scholar. Measurements and Main Results: Sepsis remains one of the most debilitating and expensive illnesses, and its prevalence is not declining. What is changing is our definition(s), its clinical course, and how we manage the septic patient. Once thought to be predominantly a syndrome of over exuberant inflammation, sepsis is now recognized as a syndrome of aberrant host protective immunity. Earlier recognition and compliance with treatment bundles has fortunately led to a decline in multiple organ failure and in-hospital mortality. Unfortunately, more and more sepsis patients, especially the aged, are suffering chronic critical illness, rarely fully recover, and often experience an indolent death. Patients with chronic critical illness often exhibit “a persistent inflammation-immunosuppression and catabolism syndrome,” and it is proposed here that this state of persisting inflammation, immunosuppression and catabolism contributes to many of these adverse clinical outcomes. The underlying cause of inflammation-immunosuppression and catabolism syndrome is currently unknown, but there is increasing evidence that altered myelopoiesis, reduced effector T-cell function, and expansion of immature myeloid-derived suppressor cells are all contributory. Conclusions: Although newer therapeutic interventions are targeting the inflammatory, the immunosuppressive, and the protein catabolic responses individually, successful treatment of the septic patient with chronic critical illness and persistent inflammation-immunosuppression and catabolism syndrome may require a more complementary approach.


Journal of Immunology | 2014

Protective Immunity and Defects in the Neonatal and Elderly Immune Response to Sepsis

Lori F. Gentile; Dina C. Nacionales; M. Cecilia Lopez; Erin L. Vanzant; Angela Cuenca; Alex G. Cuenca; Ricardo Ungaro; Ben E. Szpila; Shawn D. Larson; Anna Maria Joseph; Frederick A. Moore; Christiaan Leeuwenburgh; Henry V. Baker; Lyle L. Moldawer; Philip A. Efron

Populations encompassing extremes of age, including neonates and elderly, have greater mortality from sepsis. We propose that the increased mortality observed in the neonatal and elderly populations after sepsis is due to fundamental differences in host-protective immunity and is manifested at the level of the leukocyte transcriptome. Neonatal (5–7 d), young adult (6–12 wk), or elderly (20–24 mo) mice underwent a cecal slurry model of intra-abdominal sepsis. Both neonatal and elderly mice exhibited significantly greater mortality to sepsis (p < 0.05). Neonates in particular exhibited significant attenuation of their inflammatory response (p < 0.05), as well as reductions in cell recruitment and reactive oxygen species production (both p < 0.05), all of which could be confirmed at the level of the leukocyte transcriptome. In contrast, elderly mice were also more susceptible to abdominal peritonitis, but this was associated with no significant differences in the magnitude of the inflammatory response, reduced bacterial killing (p < 0.05), reduced early myeloid cell activation (p < 0.05), and a persistent inflammatory response that failed to resolve. Interestingly, elderly mice expressed a persistent inflammatory and immunosuppressive response at the level of the leukocyte transcriptome, with failure to return to baseline by 3 d. This study reveals that neonatal and elderly mice have profoundly different responses to sepsis that are manifested at the level of their circulating leukocyte transcriptome, although the net result of increased mortality is similar. Considering these differences are fundamental aspects of the genomic response to sepsis, interventional therapies will require individualization based on the age of the population.


Critical Care Medicine | 2014

A BETTER UNDERSTANDING OF WHY MURINE MODELS OF TRAUMA DO NOT RECAPITULATE THE HUMAN SYNDROME

Lori F. Gentile; Dina C. Nacionales; M. Cecilia Lopez; Erin L. Vanzant; Angela Cuenca; Alex G. Cuenca; Ricardo Ungaro; Tezcan Ozrazgat Baslanti; Bruce A. McKinley; Azra Bihorac; Joseph Cuschieri; Ronald V. Maier; Frederick A. Moore; Christiaan Leeuwenburgh; Henry V. Baker; Lyle L. Moldawer; Philip A. Efron

Objective:Genomic analyses from blood leukocytes have concluded that mouse injury poorly reflects human trauma at the leukocyte transcriptome. Concerns have focused on the modest severity of murine injury models, differences in murine compared with human age, dissimilar circulating leukocyte populations between species, and whether similar signaling pathways are involved. We sought to examine whether the transcriptomic response to severe trauma in mice could be explained by these extrinsic factors, by utilizing an increasing severity of murine trauma and shock in young and aged mice over time, and by examining the response in isolated neutrophil populations. Design:Preclinical controlled in vivo laboratory study and retrospective cohort study. Setting:Laboratory of Inflammation Biology and Surgical Science and multi-institution level 1 trauma centers. Subjects:Six- to 10-week-old and 20- to 24-month-old C57BL/6 (B6) mice and two cohorts of 167 and 244 severely traumatized (Injury Severity Score > 15) adult (> 18 yr) patients. Interventions:Mice underwent one of two severity polytrauma models of injury. Total blood leukocyte and neutrophil samples were collected. Measurements and Main Results:Fold expression changes in leukocyte and neutrophil genome-wide expression analyses between healthy and injured mice (p < 0.001) were compared with human total and enriched blood leukocyte expression analyses of severe trauma patients at 0.5, 1, 4, 7, 14, and 28 days after injury (Glue Grant trauma-related database). We found that increasing the severity of the murine trauma model only modestly improved the correlation in the transcriptomic response with humans, whereas the age of the mice did not. In addition, the genome-wide response to blood neutrophils (rather than total WBC) was also not well correlated between humans and mice. However, the expression of many individual gene families was much more strongly correlated after injury in mice and humans. Conclusions:Although overall transcriptomic association remained weak even after adjusting for the severity of injury, age of the animals, timing, and individual leukocyte populations, there were individual signaling pathways and ontogenies that were strongly correlated between mice and humans. These genes are involved in early inflammation and innate/adaptive immunity.


Expert Opinion on Therapeutic Targets | 2014

HMGB1 as a therapeutic target for sepsis: it's all in the timing!

Lori F. Gentile; Lyle L. Moldawer

Morbidity and mortality from severe sepsis remain high, despite decades of research and improvements in intensive care unit (ICU) care. There have been over 100 failed clinical trials of biological response modifiers aimed at single therapeutic targets, mostly to suppress the early pro-inflammatory responses. In the last decade, extracellular HMGB1 has emerged as a late mediator of sepsis in murine sepsis models, whose blockade improves mortality and has a wider therapeutic window than previous efforts. Although this review promulgates the use of HMGB1 inhibitor as a therapeutic target, it should be recognized that it may not be an optimal approach to the early systemic inflammatory response syndrome (SIRS) response and cytokine storm, but rather for those patients who survive their cytokine storm and present with a persistent inflammatory, immunosuppressive and catabolism response (PICS). With earlier implementation of evidence-based best care principles for treating sepsis, fewer patients are dying from early septic shock, and there is an endemic increase in sepsis survivors with dismal long-term outcomes. These patients have ongoing inflammatory processes that may well be driven by the late and continued release of HMGB1 and other damage-associated molecular patterns receptors (DAMPRs). HMGB1 therapeutics, whether antibodies or natural herbal approaches, may be one novel approach for targeting not the early, but the late persistent inflammation of sepsis survivors.


Critical Care Medicine | 2013

Identification and description of a novel murine model for polytrauma and shock.

Lori F. Gentile; Dina C. Nacionales; Alex G. Cuenca; Michael Armbruster; Ricardo Ungaro; Amer Abouhamze; Cecelia Lopez; Henry V. Baker; Frederick A. Moore; Darwin N. Ang; Philip A. Efron

Objective:To develop a novel polytrauma model that better recapitulates the immunologic response of the severely injured patient by combining long-bone fracture, muscle tissue damage, and cecectomy with hemorrhagic shock, resulting in an equivalent Injury Severity Score of greater than 15. We compared this new polytrauma/shock model to historically used murine trauma-hemorrhage models. Design:Pre-clinical controlled in vivo laboratory study. Setting:Laboratory of Inflammation Biology and Surgical Science. Subjects:Six- to 10-week-old C57BL/6 (B6) mice. Interventions:Mice underwent 90 minutes of shock (mean arterial pressure 30 mm Hg) and resuscitation via femoral artery cannulation followed by laparotomy (trauma-hemorrhage), hemorrhage with laparotomy and femur fracture, or laparotomy with cecetomy and femur fracture with muscle tissue damage (polytrauma). Mice were euthanized at 2 hours, 1 day, and 3 days postinjury. Measurements and Main Results:The spleen, bone marrow, blood, and serum were collected from mice for analysis at the above time points. None of the models were lethal. Mice undergoing polytrauma exhibited a more robust inflammatory response with significant elevations in cytokine/chemokine concentrations when compared with traditional models. Polytrauma was the only model to induce neutrophilia (Ly6G+CD11b+ cells) on days 1 and 3 (p < 0.05). Polytrauma, as compared to trauma-hemorrhage and hemorrhage with laparotomy and femur fracture, induced a loss of circulating CD4+ T cell with simultaneous increased cell activation (CD69+ and CD25+), similar to human trauma. There was a prolonged loss of major histocompatibility complex class II expression on monocytes in the polytrauma model (p < 0.05). Results were confirmed by genome-wide expression analysis that revealed a greater magnitude and duration of blood leukocyte gene expression changes in the polytrauma model than the trauma-hemorrhage and sham models. Conclusions:This novel polytrauma model better replicates the human leukocyte, cytokine, and overall inflammatory response following injury and hemorrhagic shock.


Methods | 2013

Is there value in plasma cytokine measurements in patients with severe trauma and sepsis

Lori F. Gentile; Alex G. Cuenca; Erin L. Vanzant; Philip A. Efron; Bruce A. McKinley; Frederick A. Moore; Lyle L. Moldawer

For the past thirty years, since IL-1β and TNFα were first cloned, there have been efforts to measure plasma cytokine concentrations in patients with severe sepsis and trauma, and to use these measurements to predict clinical outcome and response to therapies. The numbers of cytokines and chemokines that have been measured in the plasma have literally exploded with the development of multiplex immune approaches. Dozens of relatively small cohort studies have shown plasma cytokine concentrations correlating with outcome in sepsis and trauma. Despite what appears to be a consensus that plasma cytokine concentrations should be useful in the clinical setting, only two cytokines, IL-6 and procalcitonin, have approached routine clinical use. IL-6 has been used as a research tool for entry into sepsis-intervention trials, while procalcitonin is being used clinically at a large number of institutions to distinguish sepsis from other inflammatory processes. For most cytokines, the relative lack of sensitivity and specificity of individual or multiplex cytokine measurements has hindered their utility to predict clinical trajectory in individual patients. The problem rests with a general misunderstanding of cytokine biology, failing to appreciate the general paracrine nature of these mediators, the presence of binding proteins, chaperones and inhibitors in the plasma, and the rapid clearance of these proteins by binding to cell receptors and clearance predominantly by the kidney. The future of using plasma cytokine measurements as an indicator of sepsis/trauma severity or predicting outcome is generally behind us, although there is optimism that procalcitonin measurements may ultimately prove to have utility in the diagnosis of severe sepsis.


Journal of Immunology | 2015

A Detailed Characterization of the Dysfunctional Immunity and Abnormal Myelopoiesis Induced by Severe Shock and Trauma in the Aged

Dina C. Nacionales; Benjamin E. Szpila; Ricardo Ungaro; M. Cecilia Lopez; Jianyi Zhang; Lori F. Gentile; Angela Cuenca; Erin L. Vanzant; Brittany Mathias; Jeevan Jyot; Donevan Westerveld; Azra Bihorac; Anna Maria Joseph; Alicia M. Mohr; Lizette Vila Duckworth; Frederick A. Moore; Henry V. Baker; Christiaan Leeuwenburgh; Lyle L. Moldawer; Scott C. Brakenridge; Philip A. Efron

The elderly are particularly susceptible to trauma, and their outcomes are frequently dismal. Such patients often have complicated clinical courses and ultimately die of infection and sepsis. Recent research has revealed that although elderly subjects have increased baseline inflammation as compared with their younger counterparts, the elderly do not respond to severe infection or injury with an exaggerated inflammatory response. Initial retrospective analysis of clinical data from the Glue Grant trauma database demonstrated that despite a similar frequency, elderly trauma patients have worse outcomes to pneumonia than younger subjects do. Subsequent analysis with a murine trauma model also demonstrated that elderly mice had increased mortality after posttrauma Pseudomonas pneumonia. Blood, bone marrow, and bronchoalveolar lavage sample analyses from juvenile and 20–24-mo-old mice showed that increased mortality to trauma combined with secondary infection in the aged are not due to an exaggerated inflammatory response. Rather, they are due to a failure of bone marrow progenitors, blood neutrophils, and bronchoalveolar lavage cells to initiate and complete an emergency myelopoietic response, engendering myeloid cells that fail to clear secondary infection. In addition, elderly people appeared unable to resolve their inflammatory response to severe injury effectively.

Collaboration


Dive into the Lori F. Gentile's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge