Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lori Mavrakis is active.

Publication


Featured researches published by Lori Mavrakis.


American Journal of Pathology | 2010

Hypoxia Inducible-Factor1α Regulates the Metabolic Shift of Pulmonary Hypertensive Endothelial Cells

Iwona Fijalkowska; Weiling Xu; Suzy Comhair; Allison J. Janocha; Lori Mavrakis; Balaji Krishnamachary; Lijie Zhen; Thianzi Mao; Amy Richter; Serpil C. Erzurum; Rubin M. Tuder

Severe pulmonary hypertension is irreversible and often fatal. Abnormal proliferation and resistance to apoptosis of endothelial cells (ECs) and hypertrophy of smooth muscle cells in this disease are linked to decreased mitochondria and preferential energy generation by glycolysis. We hypothesized this metabolic shift of pulmonary hypertensive ECs is due to greater hypoxia inducible-factor1alpha (HIF-1alpha) expression caused by low levels of nitric oxide combined with low superoxide dismutase activity. We show that cultured ECs from patients with idiopathic pulmonary arterial hypertension (IPAH-ECs) have greater HIF-1alpha expression and transcriptional activity than controls under normoxia or hypoxia, and pulmonary arteries from affected patients have increased expression of HIF-1alpha and its target carbonic anhydrase IX. Decreased expression of manganese superoxide dismutase (MnSOD) in IPAH-ECs paralleled increased HIF-1alpha levels and small interfering (SI) RNA knockdown of MnSOD, but not of the copper-zinc SOD, increased HIF-1 protein expression and hypoxia response element (HRE)-driven luciferase activity in normoxic ECs. MnSOD siRNA also reduced nitric oxide production in supernatants of IPAH-ECs. Conversely, low levels of a nitric oxide donor reduced HIF-1alpha expression in normoxic IPAH-ECs. Finally, mitochondria numbers increased in IPAH-ECs with knockdown of HIF-1alpha. These findings indicate that alterations of nitric oxide and MnSOD contribute to pathological HIF-1alpha expression and account for lower numbers of mitochondria in IPAH-ECs.


American Journal of Respiratory and Critical Care Medicine | 2011

Altered MicroRNA processing in heritable pulmonary arterial hypertension: an important role for Smad-8.

Kylie M. Drake; Deborah Zygmunt; Lori Mavrakis; Phyllis Harbor; Lingli Wang; Suzy Comhair; Serpil C. Erzurum; Micheala A. Aldred

RATIONALE Heritable pulmonary arterial hypertension (HPAH) is primarily caused by mutations of the bone morphogenetic protein (BMP) type-II receptor (BMPR2). Recent identification of mutations in the downstream mediator Smad-8 (gene, SMAD9) was surprising, because loss of Smad-8 function in canonical BMP signaling is largely compensated by Smad-1 and -5. We therefore hypothesized that noncanonical pathways may play an important role in PAH. OBJECTIVES To determine whether HPAH mutations disrupt noncanonical Smad-mediated microRNA (miR) processing. METHODS Expression of miR-21, miR-27a, and miR-100 was studied in pulmonary artery endothelial (PAEC) and pulmonary artery smooth muscle cells (PASMC) from explant lungs of patients with PAH. MEASUREMENTS AND MAIN RESULTS SMAD9 mutation completely abrogated miR induction, whereas canonical signaling was only reduced by one-third. miR-21 levels actually decreased, suggesting that residual canonical signaling uses up or degrades existing miR-21. BMPR2 mutations also led to loss of miR induction in two of three cases. HPAH cells proliferated faster than other PAH or controls. miR-21 and miR-27a each showed antiproliferative effects in PAEC and PASMC, and PAEC growth rate after BMP treatment correlated strongly with miR-21 fold-change. Overexpression of SMAD9 corrected miR processing and reversed the hyperproliferative phenotype. CONCLUSIONS HPAH-associated mutations engender a primary defect in noncanonical miR processing, whereas canonical BMP signaling is partially maintained. Smad-8 is essential for this miR pathway and its loss was not complemented by Smad-1 and -5; this may represent the first nonredundant role for Smad-8. Induction of miR-21 and miR-27a may be a critical component of BMP-induced growth suppression, loss of which likely contributes to vascular cell proliferation in HPAH.


Cancer Research | 2006

Inhibition of p53 Response in Tumor Stroma Improves Efficacy of Anticancer Treatment by Increasing Antiangiogenic Effects of Chemotherapy and Radiotherapy in Mice

Lyudmila G. Burdelya; Elena A. Komarova; Jason Hill; Timothy Browder; Natalia D. Tararova; Lori Mavrakis; Paul E. DiCorleto; Judah Folkman; Andrei V. Gudkov

Inactivation of p53 function, which frequently occurs in tumors, can significantly modulate tumor cell sensitivity to radiation and chemotherapeutic drugs. However, in addition to acting on malignant cells, anticancer agents act on the cells of tumor stroma, causing activation of a p53 response. The effect of this response on treatment outcome has been the subject of the present study. Tumors with p53-deficient stroma were generated using mouse tumorigenic packaging cells that produce a p53 inhibitory retrovirus, encoding a dominant-negative p53 mutant. Tumors maintaining wild-type p53 in their stroma were formed by cells of similar origin but deficient in retroviral production due to the deletion of the packaging signal in the retroviral vector. Comparison of these tumor models, differing only in p53 status of their stromas, showed that tumors with p53-deficient stroma were significantly more sensitive to experimental chemotherapy and radiotherapy. A similar effect was achieved when anticancer treatment was combined with pharmacologic suppression of p53 by the cyclic form of pifithrin alpha, a small-molecule inhibitor of p53. Potentiation of the anticancer effect of chemotherapy and radiotherapy by p53 suppression in the tumor stroma is likely to be due to the increased sensitivity of p53-deficient endothelium to genotoxic stress as shown both in cell culture and in experimental tumors. Thus, reversible pharmacologic suppression of p53 may be a viable approach to improving anticancer treatment via an enhanced antiangiogenic effect of chemotherapy and radiotherapy.


American Journal of Respiratory Cell and Molecular Biology | 2012

Human Primary Lung Endothelial Cells in Culture

Suzy Comhair; Weiling Xu; Lori Mavrakis; Micheala A. Aldred; Kewal Asosingh; Serpil C. Erzurum

Pulmonary endothelial functions are critical to maintain the low pressure of the pulmonary circulation and effective diffusion capacity of the lung. To investigate pulmonary endothelial cell biology in healthy or diseased lungs, we developed methods to harvest and culture pure populations of primary pulmonary arterial endothelial cells and microvascular endothelial cells from human lung explanted at time of transplantation or from donor lungs not used in transplantation. The purity and characteristics of cultured endothelial cells is ascertained by morphologic criteria using phase contrast and electron microscopy; phenotypic expression profile for endothelial specific proteins such as endothelial nitric oxide synthase, platelet/endothelial cell adhesion molecule, and von Willbrand factor; and endothelial function assays such as Dil-acetylated low-density lipoprotein uptake and tube formation. This detailed method provides researchers with the ability to establish cells for molecular, genetic, and biochemical investigation of human pulmonary vascular diseases.


Pulmonary circulation | 2011

Pulmonary artery endothelium resident endothelial colony-forming cells in pulmonary arterial hypertension

Heng T. Duong; Suzy Comhair; Micheala A. Aldred; Lori Mavrakis; Benjamin M. Savasky; Serpil C. Erzurum; Kewal Asosingh

Proliferative pulmonary vascular remodeling is the pathologic hallmark of pulmonary arterial hypertension (PAH) that ultimately leads to right heart failure and death. Highly proliferative endothelial cells known as endothelial colony-forming cells (ECFC) participate in vascular homeostasis in health as well as in pathological angiogenic remodeling in disease. ECFC are distinguished by the capacity to clonally proliferate from a single cell. The presence of ECFC in the human pulmonary arteries and their role in PAH pathogenesis is largely unknown. In this study, we established a simple technique for isolating and growing ECFC from cultured pulmonary artery endothelial cells (PAEC) to test the hypothesis that ECFC reside in human pulmonary arteries and that the proliferative vasculopathy of PAH is related to greater numbers and/or more proliferative ECFC in the pulmonary vascular wall. Flow cytometric forward and side scatter properties and aggregate correction were utilized to sort unmanipulated, single PAEC to enumerate ECFC in primary PAEC cultures derived from PAH and healthy lungs. After 2 weeks, wells were assessed for ECFC formation. ECFC derived from PAH PAEC were more proliferative than control. A greater proportion of PAH ECFC formed colonies following subculturing, demonstrating the presence of more ECFC with high proliferative potential among PAH PAEC. Human androgen receptor assay showed clonality of progeny, confirming that proliferative colonies were single cell-derived. ECFC expressed CD31, von Willebrand factor, endothelial nitric oxide synthase, caveolin-1 and CD34, consistent with an endothelial cell phenotype. We established a simple flow cytometry method that allows ECFC quantification using unmanipulated cells. We conclude that ECFC reside among PAEC and that PAH PAEC contain ECFC that are more proliferative than ECFC in control cultures, which likely contributes to the proliferative angiopathic process in PAH.


Redox biology | 2014

A novel method for pulmonary research: Assessment of bioenergetic function at the air-liquid interface

Weiling Xu; Allison J. Janocha; Rachel Leahy; Ryan S. Klatte; Dave Dudzinski; Lori Mavrakis; Suzy Comhair; Mark E. Lauer; Calvin U. Cotton; Serpil C. Erzurum

Air–liquid interface cell culture is an organotypic model for study of differentiated functional airway epithelium in vitro. Dysregulation of cellular energy metabolism and mitochondrial function have been suggested to contribute to airway diseases. However, there is currently no established method to determine oxygen consumption and glycolysis in airway epithelium in air–liquid interface. In order to study metabolism in differentiated airway epithelial cells, we engineered an insert for the Seahorse XF24 Analyzer that enabled the measure of respiration by oxygen consumption rate (OCR) and glycolysis by extracellular acidification rate (ECAR). Oxidative metabolism and glycolysis in airway epithelial cells cultured on the inserts were successfully measured. The inserts did not affect the measures of OCR or ECAR. Cells under media with apical and basolateral feeding had less oxidative metabolism as compared to cells on the inserts at air-interface with basolateral feeding. The design of inserts that can be used in the measure of bioenergetics in small numbers of cells in an organotypic state may be useful for evaluation of new drugs and metabolic mechanisms that underlie airway diseases.


PLOS ONE | 2017

Arginine metabolic endotypes related to asthma severity

Weiling Xu; Suzy Comhair; Allison J. Janocha; Abigail R. Lara; Lori Mavrakis; Carole Bennett; Satish C. Kalhan; Serpil C. Erzurum

Aims Arginine metabolism via inducible nitric oxide synthase (iNOS) and arginase 2 (ARG2) is higher in asthmatics than in healthy individuals. We hypothesized that a sub-phenotype of asthma might be defined by the magnitude of arginine metabolism categorized on the basis of high and low fraction of exhaled nitric oxide (FENO). Methods To test this hypothesis, asthmatics (n = 52) were compared to healthy controls (n = 51) for levels of FENO, serum arginase activity, and airway epithelial expression of iNOS and ARG2 proteins, in relation to clinical parameters of asthma inflammation and airway reactivity. In parallel, bronchial epithelial cells were evaluated for metabolic effects of iNOS and ARG2 expression in vitro. Results Asthmatics with high FENO (≥ 35 ppb; 44% of asthmatics) had higher expression of iNOS (P = 0.04) and ARG2 (P = 0.05) in the airway, indicating FENO is a marker of the high arginine metabolic endotype. High FENO asthmatics had the lowest FEV1% (P < 0.001), FEV1/FVC (P = 0.0002) and PC20 (P < 0.001) as compared to low FENO asthmatics or healthy controls. Low FENO asthmatics had near normal iNOS and ARG2 expression (both P > 0.05), and significantly higher PC20 (P < 0.001) as compared to high FENO asthmatics. In vitro studies to evaluate metabolic effects showed that iNOS overexpression and iNOS+ARG2 co-expression in a human bronchial epithelial cell line led to greater reliance on glycolysis with higher rate of pyruvate going to lactate. Conclusions The high FENO phenotype represents a large portion of the asthma population, and is typified by greater arginine metabolism and more severe and reactive asthma.


american thoracic society international conference | 2010

Alteration Of Nitric Oxide Synthesis Related To Abnormal Cellular Bioenergetics In Asthmatic Airway Epithelium

Weiling Xu; Suzy Comhair; Allison J. Janocha; Lori Mavrakis; Serpil C. Erzurum


american thoracic society international conference | 2012

High Proliferative Endothelial Colony-Forming Cells Among Human Pulmonary Artery Endothelial Cells In Pulmonary Arterial Hypertension

Heng T. Duong; Suzy Comhair; Lori Mavrakis; Benjamin M. Savasky; Micheala A. Aldred; Serpil C. Erzurum; Kewal Asosingh


american thoracic society international conference | 2012

Loss Of Phosphatase-Mediated Activation Of ENOS In Pulmonary Arterial Hypertension

Sudakshina Ghosh; Manveen K. Gupta; Lori Mavrakis; Allison J. Janocha; Suzy Comhair; S.V.Naga Prasad; Serpil C. Erzurum

Collaboration


Dive into the Lori Mavrakis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rubin M. Tuder

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge