Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lori Peacock is active.

Publication


Featured researches published by Lori Peacock.


Parasites & Vectors | 2008

The use of yellow fluorescent hybrids to indicate mating in Trypanosoma brucei

Wendy Gibson; Lori Peacock; Vanessa Ferris; Katherine M. Williams; Mick Bailey

BackgroundTrypanosoma brucei undergoes genetic exchange in its insect vector, the tsetse fly, by an unknown mechanism. The difficulties of working with this experimental system of genetic exchange have hampered investigation, particularly because the trypanosome life cycle stages involved cannot be cultured in vitro and therefore must be examined in the insect. Searching for small numbers of hybrid trypanosomes directly in the fly has become possible through the incorporation of fluorescent reporter genes, and we have previously carried out a successful cross using a reporter-repressor strategy. However, we could not be certain that all fluorescent trypanosomes observed in that cross were hybrids, due to mutations of the repressor leading to spontaneous fluorescence, and we have therefore developed an alternative strategy.ResultsTo visualize the production of hybrids in the fly, parental trypanosome clones were transfected with a gene encoding Green Fluorescent Protein (GFP) or Red Fluorescent Protein (RFP). Co-infection of flies with red and green fluorescent parental trypanosomes produced yellow fluorescent hybrids, which were easily visualized in the fly salivary glands. Yellow trypanosomes were not seen in midgut or proventricular samples and first appeared in the glands as epimastigotes as early as 13 days after fly infection. Cloned progeny originating from individual salivary glands had yellow, red, green or no fluorescence and were confirmed as hybrids by microsatellite, molecular karyotype and kinetoplast (mitochondrial) DNA analyses. Hybrid clones showed biparental inheritance of both nuclear and kinetoplast genomes. While segregation and reassortment of the reporter genes and microsatellite alleles were consistent with Mendelian inheritance, flow cytometry measurement of DNA content revealed both diploid and polyploid trypanosomes among the hybrid progeny clones.ConclusionThe strategy of using production of yellow hybrids to indicate mating in trypanosomes provides a robust and unequivocal system for analysis of genetic exchange. Mating occurred with high frequency in these experimental crosses, limited only by the ability of both parental trypanosomes to invade the salivary glands. Yellow hybrids appeared as soon as trypanosomes invaded the salivary glands, implicating the short, unattached epimastigote as the sexual stage. The recovery of diploid, triploid and tetraploid hybrids in these crosses was surprising as genetic markers appeared to have been inherited according to Mendelian rules. As the polyploid hybrids could have been produced from fusion of unreduced gametes, there is no fundamental conflict with a model of genetic exchange involving meiosis.


Trends in Parasitology | 2009

The heart of darkness: growth and form of Trypanosoma brucei in the tsetse fly.

Reuben Sunil Kumar Sharma; Eva Gluenz; Lori Peacock; Wendy Gibson; Keith Gull; Mark Carrington

The first description of African trypanosomes was made over a century ago. The importance of the tsetse in transmission and cyclic development of trypanosomes was discovered soon afterwards, and has been the focus of numerous studies since. However, investigation of trypanosomes in tsetse flies requires high resource investment and unusual patience; hence, many facets of trypanosome biology in the tsetse remain to be characterised despite the long history of research. Here, current knowledge and questions about some of the developmental changes in trypanosomes that occur in tsetse flies are summarised, along with recent technical advances that can now be used to provide some answers.


Eukaryotic Cell | 2007

Activation of endocytosis as an adaptation to the mammalian host by trypanosomes

Senthil Kumar A. Natesan; Lori Peacock; Keith R. Matthews; Wendy Gibson; Mark C. Field

ABSTRACT Immune evasion in African trypanosomes is principally mediated by antigenic variation, but rapid internalization of surface-bound immune factors may contribute to survival. Endocytosis is upregulated approximately 10-fold in bloodstream compared to procyclic forms, and surface coat remodeling accompanies transition between these life stages. Here we examined expression of endocytosis markers in tsetse fly stages in vivo and monitored modulation during transition from bloodstream to procyclic forms in vitro. Among bloodstream stages nonproliferative stumpy forms have endocytic activity similar to that seen with rapidly dividing slender forms, while differentiation of stumpy forms to procyclic forms is accompanied by rapid down-regulation of Rab11 and clathrin, suggesting that modulation of endocytic and recycling systems accompanies this differentiation event. Significantly, rapid down-regulation of endocytic markers occurs upon entering the insect midgut and expression of Rab11 and clathrin remains low throughout subsequent development, which suggests that high endocytic activity is not required for remodeling the parasite surface or for survival within the fly. However, salivary gland metacyclic forms dramatically increase expression of clathrin and Rab11, indicating that emergence of mammalian infective forms is coupled to reacquisition of a high-activity endocytic-recycling system. These data suggest that high-level endocytosis in Trypanosoma brucei is an adaptation required for viability in the mammalian host.


Kinetoplastid Biology and Disease | 2007

Dynamics of infection and competition between two strains of Trypanosoma brucei brucei in the tsetse fly observed using fluorescent markers

Lori Peacock; Vanessa Ferris; Mick Bailey; Wendy Gibson

BackgroundGenetic exchange occurs between Trypanosoma brucei strains during the complex developmental cycle in the tsetse vector, probably within the salivary glands. Successful mating will depend on the dynamics of co-infection with multiple strains, particularly if intraspecific competition occurs. We have previously used T. brucei expressing green fluorescent protein to study parasite development in the vector, enabling even one trypanosome to be visualized. Here we have used two different trypanosome strains transfected with either green or red fluorescent proteins to study the dynamics of co-infection directly in the tsetse fly.ResultsThe majority of infected flies had both trypanosome strains present in the midgut, but the relative proportion of red and green trypanosome strains varied considerably between flies and between different sections of the midgut in individual flies. Colonization of the paired salivary glands revealed greater variability than for midguts, as each gland could be infected with red and/or green trypanosome strains in variable proportions. Salivary glands with a mixed infection appeared to have a higher density of trypanosomes than glands containing a single strain. Comparison of the numbers of red and green trypanosomes in the proventriculus, salivary exudate and glands from individual flies showed no correlation between the composition of the trypanosome population of the proventriculus and foregut and that of the salivary glands. For each compartment examined (midgut, foregut, salivary glands), there was a significantly higher proportion of mixed infections than expected, assuming the null hypothesis that the development of each trypanosome strain is independent.ConclusionBoth the trypanosome strains used were fully capable of infecting tsetse, but the probabilities of infection with each strain were not independent, there being a significantly higher proportion of mixed infections than expected in each of three compartments examined: midgut, proventriculus and salivary glands. Hence there was no evidence of competition between trypanosome strains, but instead co-infection was frequent. Infection rates in co-infected flies were no different to those found routinely in flies infected with a single strain, ruling out the possibility that one strain enhanced infection with the other. We infer that each fly is either permissive or non-permissive of trypanosome infection with at least 3 sequential checkpoints imposed by the midgut, proventriculus and salivary glands. Salivary glands containing both trypanosome strains appeared to contain more trypanosomes than singly-infected glands, suggesting that lack of competition enhances the likelihood of genetic exchange.


Current Biology | 2014

Meiosis and haploid gametes in the pathogen Trypanosoma brucei.

Lori Peacock; Mick Bailey; Mark Carrington; Wendy Gibson

Summary In eukaryote pathogens, sex is an important driving force in spreading genes for drug resistance, pathogenicity, and virulence [1]. For the parasitic trypanosomes that cause African sleeping sickness, mating occurs during transmission by the tsetse vector [2, 3] and involves meiosis [4], but haploid gametes have not yet been identified. Here, we show that meiosis is a normal part of development in the insect salivary glands for all subspecies of Trypanosoma brucei, including the human pathogens. By observing insect-derived trypanosomes during the window of peak expression of meiosis-specific genes, we identified promastigote-like (PL) cells that interacted with each other via their flagella and underwent fusion, as visualized by the mixing of cytoplasmic red and green fluorescent proteins. PL cells had a short, wide body, a very long anterior flagellum, and either one or two kinetoplasts, but only the anterior kinetoplast was associated with the flagellum. Measurement of nuclear DNA contents showed that PL cells were haploid relative to diploid metacyclics. Trypanosomes are among the earliest diverging eukaryotes, and our results support the hypothesis that meiosis and sexual reproduction are ubiquitous in eukaryotes and likely to have been early innovations [5].


Parasites & Vectors | 2012

The life cycle of Trypanosoma (Nannomonas) congolense in the tsetse fly

Lori Peacock; Simon Cook; Vanessa Ferris; Mick Bailey; Wendy Gibson

BackgroundThe tsetse-transmitted African trypanosomes cause diseases of importance to the health of both humans and livestock. The life cycles of these trypanosomes in the fly were described in the last century, but comparatively few details are available for Trypanosoma (Nannomonas) congolense, despite the fact that it is probably the most prevalent and widespread pathogenic species for livestock in tropical Africa. When the fly takes up bloodstream form trypanosomes, the initial establishment of midgut infection and invasion of the proventriculus is much the same in T. congolense and T. brucei. However, the developmental pathways subsequently diverge, with production of infective metacyclics in the proboscis for T. congolense and in the salivary glands for T. brucei. Whereas events during migration from the proventriculus are understood for T. brucei, knowledge of the corresponding developmental pathway in T. congolense is rudimentary. The recent publication of the genome sequence makes it timely to re-investigate the life cycle of T. congolense.MethodsExperimental tsetse flies were fed an initial bloodmeal containing T. congolense strain 1/148 and dissected 2 to 78 days later. Trypanosomes recovered from the midgut, proventriculus, proboscis and cibarium were fixed and stained for digital image analysis. Trypanosomes contained in spit samples from individually caged flies were analysed similarly. Mensural data from individual trypanosomes were subjected to principal components analysis.ResultsFlies were more susceptible to infection with T. congolense than T. brucei; a high proportion of flies infected with T. congolense established a midgut and subsequent proboscis infection, whereas many T. brucei infections were lost in the migration from foregut to salivary glands. In T. congolense, trypomastigotes ceased division in the proventriculus and became uniform in size. The trypanosomes retained trypomastigote morphology during migration via the foregut to the mouthparts and we confirmed that the trypomastigote-epimastigote transition occurred in the proboscis. We found no equivalent to the asymmetric division stage in T. brucei that mediates transition of proventricular trypomastigotes to epimastigotes. In T. congolense extremely long epimastigotes with remarkably elongated posterior ends were observed in both the proboscis and cibarium; no difference was found in the developmental stages in these two organs. Dividing trypomastigotes and epimastigotes were recovered from the proboscis, some of which were in transition from trypomastigote to epimastigote and vice versa. It remains uncertain whether these morphological transitions are mediated by cell division, since we also found non-dividing cells with a variously positioned, juxta-nuclear kinetoplast.ConclusionsWe have presented a detailed description of the life cycle of T. congolense in its tsetse fly vector. During development in the fly T. congolense shares a common migratory pathway with its close relative T. brucei, culminating in the production of small metacyclic trypanosomes that can be inoculated with the saliva. Despite this outward similarity in life cycle, the transitional developmental stages in the foregut and mouthparts are remarkably different in the two trypanosome species.


Parasites & Vectors | 2009

Intraclonal mating occurs during tsetse transmission of Trypanosoma brucei

Lori Peacock; Vanessa Ferris; Mick Bailey; Wendy Gibson

BackgroundMating in Trypanosoma brucei is a non-obligatory event, triggered by the co-occurrence of different strains in the salivary glands of the vector. Recombinants that result from intra- rather than interclonal mating have been detected, but only in crosses of two different trypanosome strains. This has led to the hypothesis that when trypanosomes recognize a different strain, they release a diffusible factor or pheromone that triggers mating in any cell in the vicinity whether it is of the same or a different strain. This idea assumes that the trypanosome can recognize self and non-self, although there is as yet no evidence for the existence of mating types in T. brucei.ResultsWe investigated intraclonal mating in T. b. brucei by crossing red and green fluorescent lines of a single strain, so that recombinant progeny can be detected in the fly by yellow fluorescence. For strain 1738, seven flies had both red and green trypanosomes in the salivary glands and, in three, yellow trypanosomes were also observed, although they could not be recovered for subsequent analysis. Nonetheless, both red and non-fluorescent clones from these flies had recombinant genotypes as judged by microsatellite and karyotype analyses, and some also had raised DNA contents, suggesting recombination or genome duplication. Strain J10 produced similar results indicative of intraclonal mating. In contrast, trypanosome clones recovered from other flies showed that genotypes can be transmitted with fidelity. When a yellow hybrid clone expressing both red and green fluorescent protein genes was transmitted, the salivary glands contained a mixture of fluorescent-coloured trypanosomes, but only yellow and red clones were recovered. While loss of the GFP gene in the red clones could have resulted from gene conversion, some of these clones showed loss of heterozygosity and raised DNA contents as in the other single strain transmissions. Our observations suggest that many recombinants are non-viable after intraclonal mating.ConclusionWe have demonstrated intraclonal mating during fly transmission of T. b. brucei, contrary to previous findings that recombination occurs only when another strain is present. It is thus no longer possible to assume that T. b. brucei remains genetically unaltered after fly transmission.


Agricultural and Forest Entomology | 1999

Spatio-temporal dynamics of willow beetle (Phratora vulgatissima) in short-rotation coppice willows grown as monocultures or a genetically diverse mixture

Lori Peacock; S. Herrick; P. Brain

1 Phratora vulgatissima (Chrysomelidae) is the major pest of short‐rotation coppice willows in the U.K., capable of causing severe defoliation in monoculture plantations. As this beetle shows feeding preferences between willow clones, knowledge of the spatio‐temporal dynamics of P. vulgatissima is needed in order to assess the effects of mixed clonal plantings on the management of this pest.


Biochemical Society Transactions | 2006

Analysis of a cross between green and red fluorescent trypanosomes

Wendy Gibson; Lori Peacock; Vanessa Ferris; Katherine M. Williams; Mick Bailey

Trypanosoma brucei undergoes genetic exchange in its insect vector, but the mechanism is unknown and no one has yet seen the process. By crossing genetically engineered red and green fluorescent trypanosomes, we have been able to pinpoint the location of genetic exchange in the fly and search for intermediate stages. In experimental crosses of red and green parental trypanosomes, yellow hybrid trypanosomes first appeared in the fly salivary glands as early as 13 days after infection and were observed only in flies with a mixture of red and green trypanosomes in one or both salivary glands. Despite high numbers of flies with mixed infections, yellow trypanosomes were not detected in the fly midgut or proventriculus. The hybrid nature of yellow trypanosomes was confirmed by analysis of molecular karyotypes and microsatellite alleles. As well as yellow hybrids, hybrid trypanosomes with red, green or no fluorescence were also recovered from fly salivary glands. Analysis of microsatellite alleles in parental and progeny clones showed Mendelian inheritance. Our findings are consistent with the hypothesis that mating takes place between trypanosomes in the salivary glands of the fly before they attach to the salivary gland epithelium.


Parasitology | 2006

Multiple effects of the lectin-inhibitory sugars D-glucosamine and N-acetyl-glucosamine on tsetse-trypanosome interactions

Lori Peacock; Vanessa Ferris; Mick Bailey; Wendy Gibson

We are studying early events in the establishment of Trypanosoma brucei in the tsetse midgut using fluorescent trypanosomes to increase visibility. Feeding flies with the lectin-inhibitory sugars D-glucosamine (GlcN) or N-acetyl-glucosamine (GlcNAc) has previously been shown to enhance fly susceptibility to infection with trypanosomes and, as expected, we found that both sugars increased midgut infection rates of Glossina morsitans morsitans with T. brucei. However, GlcNAc did not show the inhibitory effect on salivary gland infection rate reported previously for GlcN. Both sugars significantly slowed the movement of the bloodmeal along the midgut. GlcN also significantly increased the size of the bloodmeal taken and fly mortality. The most surprising finding was that GlcNAc stimulated trypanosome growth not only in the midgut, but also in vitro in the absence of any factor derived from the fly. Thus our direct comparison of the effects of GlcN and GlcNAc on the trypanosome-tsetse interaction has shown that these sugars impact on trypanosome growth and tsetse physiology in different ways and are not interchangeable as suggested in the literature. The sugars cause multiple effects, not restricted solely to the inhibition of midgut lectins. These findings have implications for current models of tsetse susceptibility to trypanosome infection.

Collaboration


Dive into the Lori Peacock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge