Lorien J. Parker
St. Vincent's Institute of Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lorien J. Parker.
Angewandte Chemie | 2009
Wee Han Ang; Lorien J. Parker; Anastasia De Luca; Lucienne Juillerat-Jeanneret; Craig J. Morton; Mario Lo Bello; Michael W. Parker; Paul J. Dyson
Double trouble: A hybrid organic-inorganic (organometallic) inhibitor was designed to target glutathione transferases. The metal center is used to direct protein binding, while the organic moiety acts as the active-site inhibitor (see picture). The mechanism of inhibition was studied using a range of biophysical and biochemical methods.
Journal of Biological Chemistry | 2005
Eleonora Cesareo; Lorien J. Parker; Jens Z. Pedersen; Marzia Nuccetelli; Anna Paola Mazzetti; Anna Pastore; Giorgio Federici; Anna Maria Caccuri; Giorgio Ricci; Julian J. Adams; Michael W. Parker; Mario Lo Bello
We have recently shown that dinitrosyl diglutathionyl iron complex, a possible in vivo nitric oxide (NO) donor, binds with extraordinary affinity to one of the active sites of human glutathione transferase (GST) P1-1 and triggers negative cooperativity in the neighboring subunit of the dimer. This strong interaction has also been observed in the human Mu, Alpha, and Theta GST classes, suggesting a common mechanism by which GSTs may act as intracellular NO carriers or scavengers. We present here the crystal structure of GST P1-1 in complex with the dinitrosyl diglutathionyl iron ligand at high resolution. In this complex the active site Tyr-7 coordinates to the iron atom through its phenolate group by displacing one of the GSH ligands. The crucial importance of this catalytic residue in binding the nitric oxide donor is demonstrated by site-directed mutagenesis of this residue with His, Cys, or Phe residues. The relative binding affinity for the complex is strongly reduced in all three mutants by about 3 orders of magnitude with respect to the wild type. Electron paramagnetic resonance spectroscopy studies on intact Escherichia coli cells expressing the recombinant GST P1-1 enzyme indicate that bacterial cells, in response to NO treatment, are able to form the dinitrosyl diglutathionyl iron complex using intracellular iron and GSH. We hypothesize the complex is stabilized in vivo through binding to GST P1-1.
Chemistry: A European Journal | 2011
Lorien J. Parker; Louis C. Italiano; Craig J. Morton; Nancy C. Hancock; David B. Ascher; Jade B. Aitken; Hugh H. Harris; Pablo Campomanes; Ursula Rothlisberger; Anastasia De Luca; Mario Lo Bello; Wee Han Ang; Paul J. Dyson; Michael W. Parker
Platinum-based cancer drugs, such as cisplatin, are highly effective chemotherapeutic agents used extensively for the treatment of solid tumors. However, their effectiveness is limited by drug resistance, which, in some cancers, has been associated with an overexpression of pi class glutathione S-transferase (GST P1-1), an important enzyme in the mercapturic acid detoxification pathway. Ethacraplatin (EA-CPT), a trans-Pt(IV) carboxylate complex containing ethacrynate ligands, was designed as a platinum cancer metallodrug that could also target cytosolic GST enzymes. We previously reported that EA-CPT was an excellent inhibitor of GST activity in live mammalian cells compared to either cisplatin or ethacrynic acid. In order to understand the nature of the drug-protein interactions between EA-CPT and GST P1-1, and to obtain mechanistic insights at a molecular level, structural and biochemical investigations were carried out, supported by molecular modeling analysis using quantum mechanical/molecular mechanical methods. The results suggest that EA-CPT preferentially docks at the dimer interface at GST P1-1 and subsequent interaction with the enzyme resulted in docking of the ethacrynate ligands at both active sites (in the H-sites), with the Pt moiety remaining bound at the dimer interface. The activation of the inhibitor by its target enzyme and covalent binding accounts for the strong and irreversible inhibition of enzymatic activity by the platinum complex.
Journal of Medicinal Chemistry | 2012
Hirofumi Nakano; Nae Saito; Lorien J. Parker; Yukio Tada; Masanao Abe; Keiko Tsuganezawa; Shigeyuki Yokoyama; Akiko Tanaka; Hirotatsu Kojima; Takayoshi Okabe; Tetsuo Nagano
Serine/threonine kinase PIM1 is an emerging therapeutic target for hematopoietic and prostate cancer therapy. To develop a novel PIM1 inhibitor, we focused on 1, a metabolically labile, nonselective kinase inhibitor discovered in our previous screening study. We adopted a rational optimization strategy based mainly on structural information for the PIM1-1 complex to improve the potency and selectivity. This approach afforded the potent and metabolically stable PIM1-selective inhibitor 14, which shows only a marginal increase in molecular weight compared with 1 but has a significantly decreased cLogP. The validity of our design concept was confirmed by X-ray structure analysis. In a cellular study, 14 potently inhibited the growth of human leukemia cell line MV4-11 but had a negligible effect on the growth of WI-38 (surrogate for general toxicity). These results demonstrate the effectiveness of our design strategy for evolving the screening-hit compound 1 into a novel type of PIM1 inhibitor, 14.
Journal of Molecular Biology | 2008
Lorien J. Parker; Sarah Ciccone; Louis C. Italiano; Alessandra Primavera; Aaron J. Oakley; Craig J. Morton; Nancy C. Hancock; Mario Lo Bello; Michael W. Parker
The commonly used anti-cancer drug chlorambucil is the primary treatment for patients with chronic lymphocytic leukaemia. Chlorambucil has been shown to be detoxified by human glutathione transferase Pi (GST P1-1), an enzyme that is often found over-expressed in cancer tissues. The allelic variants of GST P1-1 are associated with differing susceptibilities to leukaemia and differ markedly in their efficiency in catalysing glutathione (GSH) conjugation reactions. Here, we perform detailed kinetic studies of the allelic variants with the aid of three representative co-substrates. We show that the differing catalytic properties of the variants are highly substrate-dependent. We show also that all variants exhibit the same temperature stability in the range 10 degrees C to 45 degrees C. We have determined the crystal structures of GST P1-1 in complex with chlorambucil and its GSH conjugate for two of these allelic variants that have different residues at positions 104 and 113. Chlorambucil is found to bind in a non-productive mode to the substrate-binding site (H-site) in the absence of GSH. This result suggests that under certain stress conditions where GSH levels are low, GST P1-1 can inactivate the drug by sequestering it from the surrounding medium. However, in the presence of GSH, chlorambucil binds in the H-site in a productive mode and undergoes a conjugation reaction with GSH present in the crystal. The crystal structure of the GSH-chlorambucil complex bound to the *C variant is identical with the *A variant ruling out the hypothesis that primary structure differences between the variants cause structural changes at the active site. Finally, we show that chlorambucil is a very poor inhibitor of the enzyme in contrast to ethacrynic acid, which binds to the enzyme in a similar fashion but can act as both substrate and inhibitor.
Protein Science | 2006
Ramiro Téllez-Sanz; Eleonora Cesareo; Marzia Nuccetelli; Ana Aguilera; Carmen Barón; Lorien J. Parker; Julian J. Adams; Craig J. Morton; Mario Lo Bello; Michael W. Parker; Luis García-Fuentes
The nitric oxide molecule (NO) is involved in many important physiological processes and seems to be stabilized by reduced thiol species, such as S‐nitrosoglutathione (GSNO). GSNO binds strongly to glutathione transferases, a major superfamily of detoxifying enzymes. We have determined the crystal structure of GSNO bound to dimeric human glutathione transferase P1‐1 (hGSTP1‐1) at 1.4 Å resolution. The GSNO ligand binds in the active site with the nitrosyl moiety involved in multiple interactions with the protein. Isothermal titration calorimetry and differential scanning calorimetry (DSC) have been used to characterize the interaction of GSNO with the enzyme. The binding of GSNO to wild‐type hGSTP1‐1 induces a negative cooperativity with a kinetic process concomitant to the binding process occurring at more physiological temperatures. GSNO inhibits wild‐type enzyme competitively at lower temperatures but covalently at higher temperatures, presumably by S‐nitrosylation of a sulfhydryl group. The C47S mutation removes the covalent modification potential of the enzyme by GSNO. These results are consistent with a model in which the flexible helix α2 of hGST P1‐1 must move sufficiently to allow chemical modification of Cys47. In contrast to wild‐type enzyme, the C47S mutation induces a positive cooperativity toward GSNO binding. The DSC results show that the thermal stability of the mutant is slightly higher than wild type, consistent with helix α2 forming new interactions with the other subunit. All these results suggest that Cys47 plays a key role in intersubunit cooperativity and that under certain pathological conditions S‐nitrosylation of Cys47 by GSNO is a likely physiological scenario.
Journal of Molecular Biology | 2012
Keiko Tsuganezawa; Hisami Watanabe; Lorien J. Parker; Hitomi Yuki; Shigenao Taruya; Yukari Nakagawa; Daisuke Kamei; Masumi Mori; Naoko Ogawa; Yuri Tomabechi; Noriko Handa; Teruki Honma; Shigeyuki Yokoyama; Hirotatsu Kojima; Takayoshi Okabe; Tetsuo Nagano; Akiko Tanaka
A new screening method using fluorescent correlation spectroscopy was developed to select kinase inhibitors that competitively inhibit the binding of a fluorescently labeled substrate peptide. Using the method, among approximately 700 candidate compounds selected by virtual screening, we identified a novel Pim-1 kinase inhibitor targeting its peptide binding residues. X-ray crystal analysis of the complex structure of Pim-1 with the inhibitor indicated that the inhibitor actually binds to the ATP-binding site and also forms direct interactions with residues (Asp128 and Glu171) that bind the substrate peptide. These interactions, which cause small side-chain movements, seem to affect the binding ability of the fluorescently labeled substrate. The compound inhibited Pim-1 kinase in vitro, with an IC(50) value of 150 nM. Treatment of cultured leukemia cells with the compound reduced the amount of p21 and increased the amount of p27, due to Pim-1 inhibition, and then triggered apoptosis after cell-cycle arrest at the G(1)/S phase. This screening method may be widely applicable for the identification of various new Pim-1 kinase inhibitors targeting the residues that bind the substrate peptide.
Protein Science | 2009
Indalecio Quesada-Soriano; Lorien J. Parker; Alessandra Primavera; Juan M. Casas-Solvas; Antonio Vargas-Berenguel; Carmen Barón; Craig J. Morton; Anna Paola Mazzetti; Mario Lo Bello; Michael W. Parker; Luis García-Fuentes
The effect of the Y108V mutation of human glutathione S‐transferase P1‐1 (hGST P1‐1) on the binding of the diuretic drug ethacrynic acid (EA) and its glutathione conjugate (EASG) was investigated by calorimetric, spectrofluorimetric, and crystallographic studies. The mutation Tyr 108 → Val resulted in a 3D‐structure very similar to the wild type (wt) enzyme, where both the hydrophobic ligand binding site (H‐site) and glutathione binding site (G‐site) are unchanged except for the mutation itself. However, due to a slight increase in the hydrophobicity of the H‐site, as a consequence of the mutation, an increase in the entropy was observed. The Y108V mutation does not affect the affinity of EASG for the enzyme, which has a higher affinity (Kd ∼ 0.5 μM) when compared with those of the parent compounds, K dEA ∼ 13 μM, K dGSH ∼ 25 μM. The EA moiety of the conjugate binds in the H‐site of Y108V mutant in a fashion completely different to those observed in the crystal structures of the EA or EASG wt complex structures. We further demonstrate that the ΔCp values of binding can also be correlated with the potential stacking interactions between ligand and residues located in the binding sites as predicted from crystal structures. Moreover, the mutation does not significantly affect the global stability of the enzyme. Our results demonstrate that calorimetric measurements maybe useful in determining the preference of binding (the binding mode) for a drug to a specific site of the enzyme, even in the absence of structural information.
Journal of Molecular Recognition | 2011
Indalecio Quesada-Soriano; Lorien J. Parker; Alessandra Primavera; Jerome Wielens; Jessica K. Holien; Juan M. Casas-Solvas; Antonio Vargas-Berenguel; Ana Aguilera; Marzia Nuccetelli; Anna Paola Mazzetti; Mario Lo Bello; Michael W. Parker; Luis García-Fuentes
The diuretic drug ethacrynic acid (EA), both an inhibitor and substrate of pi class glutathione S‐transferase (GST P1‐1), has been tested in clinical trials as an adjuvant in chemotherapy. We recently studied the role of the active site residue Tyr‐108 in binding EA to the enzyme and found that the analysis was complicated by covalent binding of this drug to the highly reactive Cys‐47. Previous attempts to eliminate this binding by chemical modification yielded ambiguous results and therefore we decided here to produce a double mutant C47S/Y108V by site directed mutagenesis and further expression in Escherichia coli and the interaction of EA and its GSH conjugate (EASG) examined by calorimetric studies and X‐ray diffraction. Surprisingly, in the absence of Cys‐47, Cys‐101 (located at the dimer interface) becomes a target for modification by EA, albeit at a lower conjugation rate than Cys‐47. The Cys‐47 → Ser mutation in the double mutant enzyme induces a positive cooperativity between the two subunits when ligands with affinity to G‐site bind to enzyme. However, this mutation does not seem to affect the thermodynamic properties of ligand binding to the electrophilic binding site (H‐site) and the thermal or chemical stability of this double mutant does not significantly affect the unfolding mechanism in either the absence or presence of ligand. Crystal structures of apo and an EASG complex are essentially identical with a few exceptions in the H‐site and in the water network at the dimer interface. Copyright
Journal of Inorganic Biochemistry | 2012
Lorien J. Parker; David B. Ascher; Chen Gao; Luke A. Miles; Hugh H. Harris; Michael W. Parker
In this mini-review we focus on metal interactions with proteins with a particular emphasis on the evident synergism between different biophysical approaches toward understanding metallobiology. We highlight three recent examples from our own laboratory. Firstly, we describe metallodrug interactions with glutathione S-transferases, an enzyme family known to attack commonly used anti-cancer drugs. We then describe a protein target for memory enhancing drugs called insulin-regulated aminopeptidase in which zinc plays a role in catalysis and regulation. Finally we describe our studies on a protein, amyloid precursor protein, that appears to play a central role in Alzheimers disease. Copper ions have been implicated in playing both beneficial and detrimental roles in the disease by binding to different regions of this protein.