Lotta Lundgren
Lund University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lotta Lundgren.
Annals of Oncology | 2010
Steven O'Day; Michele Maio; Vanna Chiarion-Sileni; Thomas F. Gajewski; Hubert Pehamberger; I. N. Bondarenko; Paola Queirolo; Lotta Lundgren; S. Mikhailov; Laslo Roman; Claire F. Verschraegen; Rachel Humphrey; Ramy Ibrahim; V. de Pril; Axel Hoos; Jedd D. Wolchok
BACKGROUND This phase II study evaluated the safety and activity of ipilimumab, a fully human mAb that blocks cytotoxic T-lymphocyte antigen-4, in patients with advanced melanoma. PATIENTS AND METHODS Patients with previously treated, unresectable stage III/stage IV melanoma received 10 mg/kg ipilimumab every 3 weeks for four cycles (induction) followed by maintenance therapy every 3 months. The primary end point was best overall response rate (BORR) using modified World Health Organization (WHO) criteria. We also carried out an exploratory analysis of proposed immune-related response criteria (irRC). RESULTS BORR was 5.8% with a disease control rate (DCR) of 27% (N = 155). One- and 2-year survival rates (95% confidence interval) were 47.2% (39.5% to 55.1%) and 32.8% (25.4% to 40.5%), respectively, with a median overall survival of 10.2 months (7.6-16.3). Of 43 patients with disease progression by modified WHO criteria, 12 had disease control by irRC (8% of all treated patients), resulting in a total DCR of 35%. Adverse events (AEs) were largely immune related, occurring mainly in the skin and gastrointestinal tract, with 19% grade 3 and 3.2% grade 4. Immune-related AEs were manageable and generally reversible with corticosteroids. CONCLUSION Ipilimumab demonstrated clinical activity with encouraging long-term survival in a previously treated advanced melanoma population.
British Journal of Dermatology | 2013
Henrik Ekedahl; Helena Cirenajwis; Katja Harbst; Ana Carneiro; Kari Nielsen; Håkan Olsson; Lotta Lundgren; Christian Ingvar; Gunilla Jönsson
BRAF and NRAS mutations are frequently found in melanoma tumours, and recently developed BRAF‐targeted therapies demonstrate significant clinical benefit.
Clinical Cancer Research | 2012
Katja Harbst; Johan Staaf; Martin Lauss; Anna Karlsson; Anna Måsbäck; Iva Johansson; Pär-Ola Bendahl; Johan Vallon-Christersson; Therese Törngren; Henrik Ekedahl; Jürgen Geisler; Mattias Höglund; Markus Ringnér; Lotta Lundgren; Karin Jirström; Håkan Olsson; Christian Ingvar; Åke Borg; Hensin Tsao; Göran Jönsson
Purpose: For primary melanomas, tumor thickness, mitotic rate, and ulceration are well-laid cornerstones of prognostication. However, a molecular exposition of melanoma aggressiveness is critically missing. We recently uncovered a four-class structure in metastatic melanoma, which predicts outcome and informs biology. This raises the possibility that a molecular structure exists even in the early stages of melanoma and that molecular determinants could underlie histophenotype and eventual patient outcome. Experimental Design: We subjected 223 archival primary melanomas to a horizontally integrated analysis of RNA expression, oncogenic mutations at 238 lesions, histomorphometry, and survival data. Results: Our previously described four-class structure that was elucidated in metastatic lesions was evident within the expression space of primary melanomas. Because these subclasses converged into two larger prognostic and phenotypic groups, we used the metastatic lesions to develop a binary subtype-based signature capable of distinguishing between “high” and “low” grade forms of the disease. The two-grade signature was subsequently applied to the primary melanomas. Compared with low-grade tumors, high-grade primary melanomas were significantly associated with increased tumor thickness, mitotic rate, ulceration (all P < 0.01), and poorer relapse-free (HR = 4.94; 95% CI, 2.84–8.59), and overall (HR = 3.66; 95% CI, 2.40–5.58) survival. High-grade melanomas exhibited elevated levels of proliferation and BRCA1/DNA damage signaling genes, whereas low-grade lesions harbored higher expression of immune genes. Importantly, the molecular-grade signature was validated in two external gene expression data sets. Conclusions: We provide evidence for a molecular organization within melanomas, which is preserved across all stages of disease. Clin Cancer Res; 18(15); 4026–36. ©2012 AACR.
Proteomics | 2014
Yutaka Sugihara; Ákos Végvári; Charlotte Welinder; Göran Jönsson; Christian Ingvar; Lotta Lundgren; Håkan Olsson; Thomas Breslin; Elisabet Wieslander; Thomas Laurell; Melinda Rezeli; Bo Jansson; Toshihide Nishimura; Thomas E. Fehniger; Bo Baldetorp; György Marko-Varga
Malignant melanoma (MM) patients are being treated with an increasing number of personalized medicine (PM) drugs, several of which are small molecule drugs developed to treat patients with specific disease genotypes and phenotypes. In particular, the clinical application of protein kinase inhibitors has been highly effective for certain subsets of MM patients. Vemurafenib, a protein kinase inhibitor targeting BRAF‐mutated protein, has shown significant efficacy in slowing disease progression. In this paper, we provide an overview of this new generation of targeted drugs, and demonstrate the first data on localization of PM drugs within tumor compartments. In this study, we have introduced MALDI‐MS imaging to provide new information on one of the drugs currently used in the PM treatment of MM, vemurafenib. In a proof‐of‐concept in vitro study, MALDI‐MS imaging was used to identify vemurafenib applied to metastatic lymph nodes tumors of subjects attending the regional hospital network of Southern Sweden. The paper provides evidence of BRAF overexpression in tumors isolated from MM patients and localization of the specific drug targeting BRAF, vemurafenib, using MS fragment ion signatures. Our ability to determine drug uptake at the target sites of directed therapy provides important opportunity for increasing our understanding about the mode of action of drug activity within the disease environment.
Clinical and translational medicine | 2013
Charlotte Welinder; Göran Jönsson; Christian Ingvar; Lotta Lundgren; Håkan Olsson; Thomas Breslin; Ákos Végvári; Thomas Laurell; Melinda Rezeli; Bo Jansson; Bo Baldetorp; György Marko-Varga
BackgroundThe objectives and goals of the Southern Swedish Malignant Melanoma (SSMM)are to develop, build and utilize cutting edge biobanks and OMICS platformsto better understand disease pathology and drug mechanisms. The SSMMresearch team is a truly cross-functional group with members from oncology,surgery, bioinformatics, proteomics, and genomics initiatives. Within theresearch team there are members who daily diagnose patients with suspectmelanomas, do follow-ups on malignant melanoma patients and remove primaryor metastatic lesions by surgery. This inter-disciplinary clinical patientcare ensures a competence build as well as a best practice procedure wherethe patient benefits.MethodsClinical materials from patients before, during and after treatments withclinical end points are being collected. Tissue samples as well as bio-fluidsamples such as blood fractions, plasma, serum and whole blood will bearchived in 384-high density sample tube formats. Standardized approachesfor patient selections, patient sampling, sample-processing and analysisplatforms with dedicated protein assays and genomics platforms that willhold value for the research community are used. The patient biobank archivesare fully automated with novel ultralow temperature biobank storage unitsand used as clinical resources.ResultsAn IT-infrastructure using a laboratory information management system (LIMS)has been established, that is the key interface for the research teams inorder to share and explore data generated within the project. The cross-sitedata repository in Lund forms the basis for sample processing, together withbiological samples in southern Sweden, including blood fractions and tumortissues. Clinical registries are associated with the biobank materials,including pathology reports on disease diagnosis on the malignant melanoma(MM) patients.ConclusionsWe provide data on the developments of protein profiling and targeted proteinassays on isolated melanoma tumors, as well as reference blood standardsthat is used by the team members in the respective laboratories. These pilotdata show biobank access and feasibility of performing quantitativeproteomics in MM biobank repositories collected in southern Sweden. Thescientific outcomes further strengthen the build of healthcare benefit inthe complex challenges of malignant melanoma pathophysiology that isaddressed by the novel personalized medicines entering the market.
PLOS ONE | 2014
Charlotte Welinder; Göran Jönsson; Christian Ingvar; Lotta Lundgren; Bo Baldetorp; Håkan Olsson; Thomas Breslin; Melinda Rezeli; Bo Jansson; Thomas E. Fehniger; Thomas Laurell; Elisabet Wieslander; Krzysztof Pawłowski; György Marko-Varga
Globally, malignant melanoma shows a steady increase in the incidence among cancer diseases. Malignant melanoma represents a cancer type where currently no biomarker or diagnostics is available to identify disease stage, progression of disease or personalized medicine treatment. The aim of this study was to assess the tissue expression of alpha-synuclein, a protein implicated in several disease processes, in metastatic tissues from malignant melanoma patients. A targeted Selected Reaction Monitoring (SRM) assay was developed and utilized together with stable isotope labeling for the relative quantification of two target peptides of alpha-synuclein. Analysis of alpha-synuclein protein was then performed in ten metastatic tissue samples from the Lund Melanoma Biobank. The calibration curve using peak area ratio (heavy/light) versus concentration ratios showed linear regression over three orders of magnitude, for both of the selected target peptide sequences. In support of the measurements of specific protein expression levels, we also observed significant correlation between the protein and mRNA levels of alpha-synuclein in these tissues. Investigating levels of tissue alpha-synuclein may add novel aspect to biomarker development in melanoma, help to understand disease mechanisms and ultimately contribute to discriminate melanoma patients with different prognosis.
PLOS ONE | 2015
Charlotte Welinder; Krzysztof Pawłowski; Yutaka Sugihara; Maria Yakovleva; Göran Jönsson; Christian Ingvar; Lotta Lundgren; Bo Baldetorp; Håkan Olsson; Melinda Rezeli; Bo Jansson; Thomas Laurell; Thomas E. Fehniger; Balazs Dome; Johan Malm; Elisabet Wieslander; Toshihide Nishimura; György Marko-Varga
Malignant melanoma has the highest increase of incidence of malignancies in the western world. In early stages, front line therapy is surgical excision of the primary tumor. Metastatic disease has very limited possibilities for cure. Recently, several protein kinase inhibitors and immune modifiers have shown promising clinical results but drug resistance in metastasized melanoma remains a major problem. The need for routine clinical biomarkers to follow disease progression and treatment efficacy is high. The aim of the present study was to build a protein sequence database in metastatic melanoma, searching for novel, relevant biomarkers. Ten lymph node metastases (South-Swedish Malignant Melanoma Biobank) were subjected to global protein expression analysis using two proteomics approaches (with/without orthogonal fractionation). Fractionation produced higher numbers of protein identifications (4284). Combining both methods, 5326 unique proteins were identified (2641 proteins overlapping). Deep mining proteomics may contribute to the discovery of novel biomarkers for metastatic melanoma, for example dividing the samples into two metastatic melanoma “genomic subtypes”, (“pigmentation” and “high immune”) revealed several proteins showing differential levels of expression. In conclusion, the present study provides an initial version of a metastatic melanoma protein sequence database producing a total of more than 5000 unique protein identifications. The raw data have been deposited to the ProteomeXchange with identifiers PXD001724 and PXD001725.
PLOS ONE | 2017
Charlotte Welinder; Krzysztof Pawłowski; Marcell A. Szász; Maria Yakovleva; Yutaka Sugihara; Johan Malm; Göran Jönsson; Christian Ingvar; Lotta Lundgren; Bo Baldetorp; Håkan Olsson; Melinda Rezeli; Thomas Laurell; Elisabet Wieslander; György Marko-Varga
Background Metastatic melanoma is still one of the most prevalent skin cancers, which upon progression has neither a prognostic marker nor a specific and lasting treatment. Proteomic analysis is a versatile approach with high throughput data and results that can be used for characterizing tissue samples. However, such analysis is hampered by the complexity of the disease, heterogeneity of patients, tumors, and samples themselves. With the long term aim of quest for better diagnostics biomarkers, as well as predictive and prognostic markers, we focused on relating high resolution proteomics data to careful histopathological evaluation of the tumor samples and patient survival information. Patients and methods Regional lymph node metastases obtained from ten patients with metastatic melanoma (stage III) were analyzed by histopathology and proteomics using mass spectrometry. Out of the ten patients, six had clinical follow-up data. The protein deep mining mass spectrometry data was related to the histopathology tumor tissue sections adjacent to the area used for deep-mining. Clinical follow-up data provided information on disease progression which could be linked to protein expression aiming to identify tissue-based specific protein markers for metastatic melanoma and prognostic factors for prediction of progression of stage III disease. Results In this feasibility study, several proteins were identified that positively correlated to tumor tissue content including IF6, ARF4, MUC18, UBC12, CSPG4, PCNA, PMEL and MAGD2. The study also identified MYC, HNF4A and TGFB1 as top upstream regulators correlating to tumor tissue content. Other proteins were inversely correlated to tumor tissue content, the most significant being; TENX, EHD2, ZA2G, AOC3, FETUA and THRB. A number of proteins were significantly related to clinical outcome, among these, HEXB, PKM and GPNMB stood out, as hallmarks of processes involved in progression from stage III to stage IV disease and poor survival. Conclusion In this feasibility study, promising results show the feasibility of relating proteomics to histopathology and clinical outcome, and insight thus can be gained into the molecular processes driving the disease. The combined analysis of histological features including the sample cellular composition with protein expression of each metastasis enabled the identification of novel, differentially expressed proteins. Further studies are necessary to determine whether these putative biomarkers can be utilized in diagnostics and prognostic prediction of metastatic melanoma.
Journal of Proteome Research | 2014
Charlotte Welinder; Göran Jönsson; Christian Ingvar; Lotta Lundgren; Bo Baldetorp; Håkan Olsson; Thomas Breslin; Melinda Rezeli; Bo Jansson; Thomas Laurell; Thomas E. Fehniger; Elisabet Wieslander; Krzysztof Pawłowski; György Marko-Varga
Currently there are no clinically recognized molecular biomarkers for malignant melanoma (MM) for either diagnosing disease stage or measuring response to therapy. The aim of this feasibility study was to develop targeted selected reaction monitoring (SRM) assays for identifying candidate protein biomarkers in metastatic melanoma tissue lysate. In a pilot study applying the SRM assay, the tissue expression of nine selected proteins [complement 3 (C3), T-cell surface glycoprotein CD3 epsilon chain E (CD3E), dermatopontin, minichromosome maintenance complex component (MCM4), premelanosome protein (PMEL), S100 calcium binding protein A8 (S100A8), S100 calcium binding protein A13 (S100A13), transgelin-2 and S100B] was quantified in a small cohort of metastatic malignant melanoma patients. The SRM assay was developed using a TSQ Vantage triple quadrupole mass spectrometer that generated highly accurate peptide quantification. Repeated injection of internal standards spiked into matrix showed relative standard deviation (RSD) from 6% to 15%. All nine target proteins were identified in tumor lysate digests spiked with heavy peptide standards. The multiplex SRM peptide assay panel was then measured and quantified on a set of frozen MM tissue samples obtained from the Malignant Melanoma Biobank collected in Lund, Sweden. All nine proteins could be accurately quantified using the new SRM assay format. This study provides preliminary data on the heterogeneity of biomarker expression within MM patients. The S100B protein, which is clinically used as the pathology identifier of MM, was identified in 9 out of 10 MM tissue lysates. The use of the targeted SRM assay provides potential advancements in the diagnosis of MM that can aid in future assessments of disease in melanoma patients.
Journal of Proteomics | 2010
Bo Baldetorp; Maria Johansson; Christian Ingvar; Lotta Lundgren; Håkan Olsson; Bo Jansson; Charlotte Welinder
In this study, cell nuclei from aneuploid breast cancer samples were sorted with respect to DNA content into pure diploid and aneuploid fractions using flow cytometry. The nuclear proteins were then separated by one-dimensional gel electrophoresis (1D-PAGE) and differences in protein expression patterns, between diploid and aneuploid nuclei from the same tumours, were compared. Using a combination of peptide finger printing and peptide identification by MALDI-TOF mass spectrometry, we identified proteins and confirmed that the proteins were of nuclear origins. The results in this study add further information to the knowledge about the breast cancer disease complexity and heterogeneity at molecular level. For some of the tumours studied different nuclei protein patterns were obtained, in the diploid respective aneuploid nuclei populations, whilst other tumours did not show these differences.