Lotte B. Westerhof
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lotte B. Westerhof.
Plant Physiology | 2013
Erik J. Slootweg; Laurentiu N. Spiridon; Jan Roosien; Patrick Butterbach; Rikus Pomp; Lotte B. Westerhof; Ruud H. P. Wilbers; Erin Bakker; Jaap Bakker; Andrei-Jose Petrescu; Geert Smant; Aska Goverse
Cooperative interactions between the sensor domain and the molecular switch domain of plant immune receptors are structurally defined. Many plant and animal immune receptors have a modular nucleotide-binding-leucine-rich repeat (NB-LRR) architecture in which a nucleotide-binding switch domain, NB-ARC, is tethered to a LRR sensor domain. The cooperation between the switch and sensor domains, which regulates the activation of these proteins, is poorly understood. Here, we report structural determinants governing the interaction between the NB-ARC and LRR in the highly homologous plant immune receptors Gpa2 and Rx1, which recognize the potato cyst nematode Globodera pallida and Potato virus X, respectively. Systematic shuffling of polymorphic sites between Gpa2 and Rx1 showed that a minimal region in the ARC2 and N-terminal repeats of the LRR domain coordinate the activation state of the protein. We identified two closely spaced amino acid residues in this region of the ARC2 (positions 401 and 403) that distinguish between autoactivation and effector-triggered activation. Furthermore, a highly acidic loop region in the ARC2 domain and basic patches in the N-terminal end of the LRR domain were demonstrated to be required for the physical interaction between the ARC2 and LRR. The NB-ARC and LRR domains dissociate upon effector-dependent activation, and the complementary-charged regions are predicted to mediate a fast reassociation, enabling multiple rounds of activation. Finally, we present a mechanistic model showing how the ARC2, NB, and N-terminal half of the LRR form a clamp, which regulates the dissociation and reassociation of the switch and sensor domains in NB-LRR proteins.
Journal of Biological Chemistry | 2015
Stepan Fenyk; Philip D. Townsend; Christopher H. Dixon; Gerhard B. Spies; Alba de San Eustaquio Campillo; Erik J. Slootweg; Lotte B. Westerhof; Fleur Gawehns; Marc R. Knight; Gary J. Sharples; Aska Goverse; Lars-Olof Pålsson; Frank L. W. Takken; Martin J. Cann
Background: Direct targets for plant NLR proteins in immune signaling are largely unknown. Results: The Rx1 NLR protein of potato binds and distorts DNA following pathogen perception, resulting in immune activation. Conclusion: DNA is a direct signaling target for a plant NLR immune receptor. Significance: Plant NLR receptors might regulate immune transcriptional responses by directly interacting with plant chromatin. Plant nucleotide-binding leucine-rich repeat (NLR) proteins enable cells to respond to pathogen attack. Several NLRs act in the nucleus; however, conserved nuclear targets that support their role in immunity are unknown. Previously, we noted a structural homology between the nucleotide-binding domain of NLRs and DNA replication origin-binding Cdc6/Orc1 proteins. Here we show that the NB-ARC (nucleotide-binding, Apaf-1, R-proteins, and CED-4) domain of the Rx1 NLR of potato binds nucleic acids. Rx1 induces ATP-dependent bending and melting of DNA in vitro, dependent upon a functional P-loop. In situ full-length Rx1 binds nuclear DNA following activation by its cognate pathogen-derived effector protein, the coat protein of potato virus X. In line with its obligatory nucleocytoplasmic distribution, DNA binding was only observed when Rx1 was allowed to freely translocate between both compartments and was activated in the cytoplasm. Immune activation induced by an unrelated NLR-effector pair did not trigger an Rx1-DNA interaction. DNA binding is therefore not merely a consequence of immune activation. These data establish a role for DNA distortion in Rx1 immune signaling and define DNA as a molecular target of an activated NLR.
Scientific Reports | 2017
Ruud H. P. Wilbers; Lotte B. Westerhof; Kim van Noort; Katja Obieglo; Nicole N. Driessen; Bart Everts; Sonja I. Gringhuis; Gabriele Schramm; Aska Goverse; Geert Smant; Jaap Bakker; Hermelijn H. Smits; Maria Yazdanbakhsh; Arjen Schots; Cornelis H. Hokke
Helminth parasites control host-immune responses by secreting immunomodulatory glycoproteins. Clinical trials and mouse model studies have demonstrated the potential of helminth-derived glycoproteins for the treatment of immune-related diseases, like allergies and autoimmune diseases. Studies are however hampered by the limited availability of native parasite-derived proteins. Moreover, recombinant protein production systems have thus far been unable to reconstitute helminth-like glycosylation essential for the functionality of some helminth glycoproteins. Here we exploited the flexibility of the N-glycosylation machinery of plants to reconstruct the helminth glycoproteins omega-1 and kappa-5, two major constituents of immunomodulatory Schistosoma mansoni soluble egg antigens. Fine-tuning transient co-expression of specific glycosyltransferases in Nicotiana benthamiana enabled the synthesis of Lewis X (LeX) and LDN/LDN-F glycan motifs as found on natural omega-1 and kappa-5, respectively. In vitro and in vivo evaluation of the introduction of native LeX motifs on plant-produced omega-1 confirmed that LeX on omega-1 contributes to the glycoprotein’s Th2-inducing properties. These data indicate that mimicking the complex carbohydrate structures of helminths in plants is a promising strategy to allow targeted evaluation of therapeutic glycoproteins for the treatment of inflammatory disorders. In addition, our results offer perspectives for the development of effective anti-helminthic vaccines by reconstructing native parasite glycoprotein antigens.
Plant Biotechnology Journal | 2014
Lotte B. Westerhof; Ruud H. P. Wilbers; Debbie R. van Raaij; Dieu-Linh Nguyen; Aska Goverse; Maurice Henquet; Cornelis H. Hokke; Dirk Bosch; Jaap Bakker; Arjen Schots
The unique features of IgA, such as the ability to recruit neutrophils and suppress the inflammatory responses mediated by IgG and IgE, make it a promising antibody isotype for several therapeutic applications. However, in contrast to IgG, reports on plant production of IgA are scarce. We produced IgA1κ and IgG1κ versions of three therapeutic antibodies directed against pro-inflammatory cytokines in Nicotiana benthamiana: Infliximab and Adalimumab, directed against TNF-α, and Ustekinumab, directed against the interleukin-12p40 subunit. We evaluated antibody yield, quality and N-glycosylation. All six antibodies had comparable levels of expression between 3.5 and 9% of total soluble protein content and were shown to have neutralizing activity in a cell-based assay. However, IgA1κ-based Adalimumab and Ustekinumab were poorly secreted compared to their IgG counterparts. Infliximab was poorly secreted regardless of isotype backbone. This corresponded with the observation that both IgA1κ- and IgG1κ-based Infliximab were enriched in oligomannose-type N-glycan structures. For IgG1κ-based Ustekinumab and Adalimumab, the major N-glycan type was the typical plant complex N-glycan, biantennary with terminal N-acetylglucosamine, β1,2-xylose and core α1,3-fucose. In contrast, the major N-glycan on the IgA-based antibodies was xylosylated, but lacked core α1,3-fucose and one terminal N-acetylglucosamine. This type of N-glycan occurs usually in marginal percentages in plants and was never shown to be the main fraction of a plant-produced recombinant protein. Our data demonstrate that the antibody isotype may have a profound influence on the type of N-glycan an antibody receives.
PLOS ONE | 2012
Lotte B. Westerhof; Ruud H. P. Wilbers; Jan Roosien; Jan van de Velde; Aska Goverse; Jaap Bakker; Arjen Schots
Heterologous expression platforms of biopharmaceutical proteins have been significantly improved over the last decade. Further improvement can be established by examining the intrinsic properties of proteins. Interleukin-10 (IL-10) is an anti-inflammatory cytokine with a short half-life that plays an important role in re-establishing immune homeostasis. This homodimeric protein of 36 kDa has significant therapeutic potential to treat inflammatory and autoimmune diseases. In this study we show that the major production bottleneck of human IL-10 is not protein instability as previously suggested, but extensive multimerisation due to its intrinsic 3D domain swapping characteristic. Extensive multimerisation of human IL-10 could be visualised as granules in planta. On the other hand, mouse IL-10 hardly multimerised, which could be largely attributed to its glycosylation. By introducing a short glycine-serine-linker between the fourth and fifth alpha helix of human IL-10 a stable monomeric form of IL-10 (hIL-10mono) was created that no longer multimerised and increased yield up to 20-fold. However, hIL-10mono no longer had the ability to reduce pro-inflammatory cytokine secretion from lipopolysaccharide-stimulated macrophages. Forcing dimerisation restored biological activity. This was achieved by fusing human IL-10mono to the C-terminal end of constant domains 2 and 3 of human immunoglobulin A (Fcα), a natural dimer. Stable dimeric forms of IL-10, like Fcα-IL-10, may not only be a better format for improved production, but also a more suitable format for medical applications.
PLOS Pathogens | 2017
Simone Haeberlein; Katja Obieglo; Arifa Ozir-Fazalalikhan; Mathilde A. M. Chayé; Henrike Veninga; Luciën E. P. M. van der Vlugt; Astrid Voskamp; Louis Boon; Joke M. M. den Haan; Lotte B. Westerhof; Ruud H. P. Wilbers; Arjen Schots; Gabriele Schramm; Cornelis H. Hokke; Hermelijn H. Smits
Infection with the helminth Schistosoma (S.) mansoni drives the development of interleukin (IL)-10-producing regulatory B (Breg) cells in mice and man, which have the capacity to reduce experimental allergic airway inflammation and are thus of high therapeutic interest. However, both the involved antigen and cellular mechanisms that drive Breg cell development remain to be elucidated. Therefore, we investigated whether S. mansoni soluble egg antigens (SEA) directly interact with B cells to enhance their regulatory potential, or act indirectly on B cells via SEA-modulated macrophage subsets. Intraperitoneal injections of S. mansoni eggs or SEA significantly upregulated IL-10 and CD86 expression by marginal zone B cells. Both B cells as well as macrophages of the splenic marginal zone efficiently bound SEA in vivo, but macrophages were dispensable for Breg cell induction as shown by macrophage depletion with clodronate liposomes. SEA was internalized into acidic cell compartments of B cells and induced a 3-fold increase of IL-10, which was dependent on endosomal acidification and was further enhanced by CD40 ligation. IPSE/alpha-1, one of the major antigens in SEA, was also capable of inducing IL-10 in naïve B cells, which was reproduced by tobacco plant-derived recombinant IPSE. Other major schistosomal antigens, omega-1 and kappa-5, had no effect. SEA depleted of IPSE/alpha-1 was still able to induce Breg cells indicating that SEA contains more Breg cell-inducing components. Importantly, SEA- and IPSE-induced Breg cells triggered regulatory T cell development in vitro. SEA and recombinant IPSE/alpha-1 also induced IL-10 production in human CD1d+ B cells. In conclusion, the mechanism of S. mansoni-induced Breg cell development involves a direct targeting of B cells by SEA components such as the secretory glycoprotein IPSE/alpha-1.
Frontiers in Plant Science | 2017
Kassiani Kytidou; Thomas J. M. Beenakker; Lotte B. Westerhof; Cornelis H. Hokke; Geri F. Moolenaar; Nora Goosen; Mina Mirzaian; Maria J. Ferraz; Mark A. R. de Geus; Wouter W. Kallemeijn; Herman S. Overkleeft; Rolf G. Boot; Arjen Schots; Dirk Bosch; Johannes M. F. G. Aerts
Deficiency of α-galactosidase A (α-GAL) causes Fabry disease (FD), an X-linked storage disease of the glycosphingolipid globtriaosylcerammide (Gb3) in lysosomes of various cells and elevated plasma globotriaosylsphingosine (Lyso-Gb3) toxic for podocytes and nociceptive neurons. Enzyme replacement therapy is used to treat the disease, but clinical efficacy is limited in many male FD patients due to development of neutralizing antibodies (Ab). Therapeutic use of modified lysosomal α-N-acetyl-galactosaminidase (α-NAGAL) with increased α-galactosidase activity (α-NAGALEL) has therefore been suggested. We transiently produced in Nicotiana benthamiana leaves functional α-GAL, α-NAGAL, and α-NAGALEL enzymes for research purposes. All enzymes could be visualized with activity-based probes covalently binding in their catalytic pocket. Characterization of purified proteins indicated that α-NAGALEL is improved in activity toward artificial 4MU-α-galactopyranoside. Recombinant α-NAGALEL and α-NAGAL are not neutralized by Ab-positive FD serum tested and are more stable in human plasma than α-GAL. Both enzymes hydrolyze the lipid substrates Gb3 and Lyso-Gb3 accumulating in Fabry patients. The addition to FD sera of α-NAGALEL, and to a lesser extent that of α-NAGAL, results in a reduction of the toxic Lyso-Gb3. In conclusion, our study suggests that modified α-NAGALEL might reduce excessive Lyso-Gb3 in FD serum. This neo-enzyme can be produced in Nicotiana benthamiana and might be further developed for the treatment of FD aiming at reduction of circulating Lyso-Gb3.
Frontiers in Plant Science | 2016
Lotte B. Westerhof; Ruud H. P. Wilbers; Debbie R. van Raaij; Christina Z. van Wijk; Aska Goverse; Jaap Bakker; Arjen Schots
Secretory IgA (sIgA) is a crucial antibody in host defense at mucosal surfaces. It is a promising antibody isotype in a variety of therapeutic settings such as passive vaccination and treatment of inflammatory disorders. However, heterologous production of this heteromultimeric protein complex is still suboptimal. The challenge is the coordinate expression of the four required polypeptides; the alpha heavy chain, the light chain, the joining chain, and part of the polymeric-Ig-receptor called the secretory component, in a 4:4:1:1 ratio. We evaluated the transient expression of three sIgAκ variants, harboring the heavy chain isotype α1, α2m1, or α2m2, of the clinical antibody Ustekinumab in planta. Ustekinumab is directed against the p40 subunit that is shared by the pro-inflammatory cytokines interleukin (IL)-12 and IL-23. A sIgA variant of this antibody may enable localized treatment of inflammatory bowel disease. Of the three different sIgA variants we obtained the highest yield with sIgA1κ reaching up to 373 μg sIgA/mg total soluble protein. The use of a multi-cassette vector containing all four expression cassettes was most efficient. However, not the expression strategy, but the incorporation of the joining chain turned out to be the limiting step for sIgA production. Our data demonstrate that transient expression in planta is suitable for the economic production of heteromultimeric protein complexes such as sIgA.
Journal of the Science of Food and Agriculture | 2015
Jan van de Velde; Ruud H. P. Wilbers; Lotte B. Westerhof; Debbie R. van Raaij; Ioanna Stavrakaki; A.S.M. Sonnenberg; Jaap Bakker; Arjen Schots
BACKGROUND Food is a potential source of immunomodulating compounds that may be used to steer immune responses towards a desired status such as reducing inflammatory disorders. However, to identify and characterize such bioactive compounds, biologically relevant and standardized assays are required. Macrophages play an important role in immunomodulation and are suited for developing cell-based assays. An assay was developed based on macrophages, in a homogeneous differentiation state, using the human monocytic cell line THP-1 previously used to assess immunomodulatory properties of low-molecular-weight allergens, hormones, dietary supplements and therapeutic drugs. RESULTS Zymosan and mushroom polysaccharide extracts lead to a heterogeneous differentiation state of THP-1 monocytes, and these cells secrete low levels of cytokines upon stimulation. Differentiation into macrophages using a low concentration of phorbol 12-myristate 13-acetate improved responsiveness. Elevated levels of cytokines were secreted by cells in a homogenous differentiation state. In addition, it was determined that the assay performs best when using cells at a concentration of (2.5-5) × 10(5) cells mL(-1). CONCLUSION An assay was developed suitable to distinguish the immunomodulatory properties of food compounds in a reproducible manner. It was evaluated using eight mushroom species by measuring the secretion of relevant cytokines TNF-α, IL-1β, IL-6 and IL-10.
PLOS ONE | 2017
Ruud H. P. Wilbers; Debbie R. van Raaij; Lotte B. Westerhof; Jaap Bakker; Geert Smant; Arjen Schots
Interleukin-10 (IL-10) is an anti-inflammatory cytokine that plays a key role in maintaining immune homeostasis. IL-10-mediated responses are triggered upon binding to a heterodimeric receptor complex consisting of IL-10 receptor (IL-10R)1 and IL-10R2. Engagement of the IL-10R complex activates the intracellular kinases Jak1 and Tyk2, but the exact roles of IL-10R2 and IL-10R2-associated signaling via Tyk2 remain unclear. To elucidate the contribution of IL-10R2 and its signaling to IL-10 activity, we re-evaluated IL-10-mediated responses on bone marrow-derived dendritic cells, macrophages and mast cells. By using bone marrow from IL-10R-/- mice it was revealed that IL-10-mediated responses depend on both IL-10R1 and IL-10R2 in all three cell types. On the contrary, bone marrow-derived cells from Tyk2-/- mice showed similar responses to IL-10 as wild-type cells, indicating that signaling via this IL-10R2-associated kinase only plays a limited role. Tyk2 was shown to control the amplitude of STAT3 activation and the up-regulation of downstream SOCS3 expression. SOCS3 up-regulation was found to be cell-type dependent and correlated with the lack of early suppression of LPS-induced TNF-α in dendritic cells. Further investigation of the IL-10R complex revealed that both the extracellular and intracellular domains of IL-10R2 influence the conformation of IL-10R1 and that both domains were required for transducing IL-10 signals. This observation highlights a novel role for the intracellular domain of IL-10R2 in the molecular mechanisms of IL-10R activation.