Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dirk Bosch is active.

Publication


Featured researches published by Dirk Bosch.


BMC Genomics | 2006

Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes

Teun Wjm van Herpen; S. V. Goryunova; Johanna van der Schoot; Makedonka Mitreva; Elma M. J. Salentijn; Oscar Vorst; M.F. Schenk; Peter A. van Veelen; Frits Koning; Loek van Soest; Ben Vosman; Dirk Bosch; R.J. Hamer; L.J.W.J. Gilissen; M.J.M. Smulders

BackgroundBread wheat (Triticum aestivum) is an important staple food. However, wheat gluten proteins cause celiac disease (CD) in 0.5 to 1% of the general population. Among these proteins, the α-gliadins contain several peptides that are associated to the disease.ResultsWe obtained 230 distinct α-gliadin gene sequences from severaldiploid wheat species representing the ancestral A, B, and D genomes of the hexaploid bread wheat. The large majority of these sequences (87%) contained an internal stop codon. All α-gliadin sequences could be distinguished according to the genome of origin on the basis of sequence similarity, of the average length of the polyglutamine repeats, and of the differences in the presence of four peptides that have been identified as T cell stimulatory epitopes in CD patients through binding to HLA-DQ2/8. By sequence similarity, α-gliadins from the public database of hexaploid T. aestivum could be assigned directly to chromosome 6A, 6B, or 6D. T. monococcum (A genome) sequences, as well as those from chromosome 6A of bread wheat, almost invariably contained epitope glia-α9 and glia-α20, but never the intact epitopes glia-α and glia-α2. A number of sequences from T. speltoides, as well as a number of sequences fromchromosome 6B of bread wheat, did not contain any of the four T cell epitopes screened for. The sequences from T. tauschii (D genome), as well as those from chromosome 6D of bread wheat, were found to contain all of these T cell epitopes in variable combinations per gene. The differences in epitope composition resulted mainly from point mutations. These substitutions appeared to be genome specific.ConclusionOur analysis shows that α-gliadin sequences from the three genomes of bread wheat form distinct groups. The four known T cell stimulatory epitopes are distributed non-randomly across the sequences, indicating that the three genomes contribute differently to epitope content. A systematic analysis of all known epitopes in gliadins and glutenins will lead to better understanding of the differences in toxicity among wheat varieties. On the basis of such insight, breeding strategies can be designed to generate less toxic varieties of wheat which may be tolerated by at least part of the CD patient population.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Galactose-extended glycans of antibodies produced by transgenic plants.

Hans Bakker; Muriel Bardor; Jos W. Molthoff; Véronique Gomord; Ingrid J.W. Elbers; Lucas H. Stevens; Wilco Jordi; Arjen Lommen; Loïc Faye; Patrice Lerouge; Dirk Bosch

Plant-specific N-glycosylation can represent an important limitation for the use of recombinant glycoproteins of mammalian origin produced by transgenic plants. Comparison of plant and mammalian N-glycan biosynthesis indicates that β1,4-galactosyltransferase is the most important enzyme that is missing for conversion of typical plant N-glycans into mammalian-like N-glycans. Here, the stable expression of human β1,4-galactosyltransferase in tobacco plants is described. Proteins isolated from transgenic tobacco plants expressing the mammalian enzyme bear N-glycans, of which about 15% exhibit terminal β1,4-galactose residues in addition to the specific plant N-glycan epitopes. The results indicate that the human enzyme is fully functional and localizes correctly in the Golgi apparatus. Despite the fact that through the modified glycosylation machinery numerous proteins have acquired unusual N-glycans with terminal β1,4-galactose residues, no obvious changes in the physiology of the transgenic plants are observed, and the feature is inheritable. The crossing of a tobacco plant expressing human β1,4-galactosyltransferase with a plant expressing the heavy and light chains of a mouse antibody results in the expression of a plantibody that exhibits partially galactosylated N-glycans (30%), which is approximately as abundant as when the same antibody is produced by hybridoma cells. These results are a major step in the in planta engineering of the N-glycosylation of recombinant antibodies.


Plant Molecular Biology | 1996

The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco

A. Schouten; Jan Roosien; Fred A. van Engelen; G.A.M. de Jong; A.W.M. Borst-Vrenssen; Jacoline F. Zilverentant; Dirk Bosch; Willem J. Stiekema; F.J. Gommers; Arjen Schots; Jaap Bakker

The effects of subcellular localization on single-chain antibody (scFv) expression levels in transgenic tobacco was evaluated using an scFv construct of a model antibody possessing different targeting signals. For translocation into the secretory pathway a secretory signal sequence preceded the scFv gene (scFv-S). For cytosolic expression the scFv antibody gene lacked such a signal sequence (scFv-C). Also, both constructs were provided with the endoplasmic reticulum (ER) retention signal KDEL (scFv-SK and scFv-CK, respectively). The expression of the different scFv constructs in transgenic tobacco plants was controlled by a CaMV 35S promoter with double enhancer. The scFv-S and scFv-SK antibody genes reached expression levels of 0.01% and 1% of the total soluble protein, respectively. Surprisingly, scFv-CK transformants showed considerable expression of up to 0.2% whereas scFv-C transformants did not show any accumulation of the scFv antibody. The differences in protein expression levels could not be explained by the steady-state levels of the mRNAs. Transient expression assays with leaf protoplasts confirmed these expression levels observed in transgenic plants, although the expression level of the scFv-S construct was higher. Furthermore, these assays showed that both the secretory signal and the ER retention signal were recognized in the plant cells. The scFv-CK protein was located intracellularly, presumably in the cytosol. The increase in scFv protein stability in the presence of the KDEL retention signal is discussed.


Trends in Plant Science | 1999

Bacillus thuringiensis toxin mediated insect resistance in plants

Ruud A. de Maagd; Dirk Bosch; Willem J. Stiekema

We are currently in an interesting phase of plant biotechnology releases, both for the scientists responsible for these innovations who are beginning to see their ideas realized, and for the biotechnology companies that are starting to see a return on their investment. One of the most notable examples, is the introduction of transgenic crops that are engineered to express a Bacillus thuringiensis toxin that confers resistance to insect predation. However, the picture is not altogether positive - there is concern that the introduction of this technology was premature or should not have happened at all, and that the valuable insecticidal properties of Bacillus thuringiensis will be lost.


Microbial Cell Factories | 2012

De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae.

Frank Koopman; Jules Beekwilder; Barbara Crimi; Adèle van Houwelingen; Robert D. Hall; Dirk Bosch; Antonius Ja van Maris; Jack T. Pronk; Jean-Marc Daran

BackgroundFlavonoids comprise a large family of secondary plant metabolic intermediates that exhibit a wide variety of antioxidant and human health-related properties. Plant production of flavonoids is limited by the low productivity and the complexity of the recovered flavonoids. Thus to overcome these limitations, metabolic engineering of specific pathway in microbial systems have been envisaged to produce high quantity of a single molecules.ResultSaccharomyces cerevisiae was engineered to produce the key intermediate flavonoid, naringenin, solely from glucose. For this, specific naringenin biosynthesis genes from Arabidopsis thaliana were selected by comparative expression profiling and introduced in S. cerevisiae. The sole expression of these A. thaliana genes yielded low extracellular naringenin concentrations (<5.5 μM). To optimize naringenin titers, a yeast chassis strain was developed. Synthesis of aromatic amino acids was deregulated by alleviating feedback inhibition of 3-deoxy-d-arabinose-heptulosonate-7-phosphate synthase (Aro3, Aro4) and byproduct formation was reduced by eliminating phenylpyruvate decarboxylase (Aro10, Pdc5, Pdc6). Together with an increased copy number of the chalcone synthase gene and expression of a heterologous tyrosine ammonia lyase, these modifications resulted in a 40-fold increase of extracellular naringenin titers (to approximately 200 μM) in glucose-grown shake-flask cultures. In aerated, pH controlled batch reactors, extracellular naringenin concentrations of over 400 μM were reached.ConclusionThe results reported in this study demonstrate that S. cerevisiae is capable of de novo production of naringenin by coexpressing the naringenin production genes from A. thaliana and optimization of the flux towards the naringenin pathway. The engineered yeast naringenin production host provides a metabolic chassis for production of a wide range of flavonoids and exploration of their biological functions.


Transgenic Research | 1995

Expression of giant silkmoth cecropin B genes in tobacco

Dion E. A. Florack; Sjefke Allefs; Rik Bollen; Dirk Bosch; Bert Visser; Willem J. Stiekema

Cecropin B is a small antibacterial peptide from the giant silkmothHyalophora cecropia. To reveal the potential of this peptide for engineering bacterial disease resistance into crops, several cecropin B gene constructs were made either for expression in the cytosol or for secretion. All constructs were cloned in a plant expression vector and introduced in tobacco viaAgrobacterium tumefaciens. A cDNA-derived cecropin B gene construct lacking the amino-terminal signal peptide was poorly expressed in transgenic plants at the mRNA level, whereas plants harbouring a full-length cDNA-derived construct containing the insect signal peptide, showed increased cecropin B-mRNA levels. Highest expression was found in plants harbouring a construct with a plant-gene-derived signal peptide. In none of the transgenic plants could the cecropin B peptide be detected. This is most likely caused by breakdown of the peptide by plant endogenous proteases, since a chemically synthesized cecropin B peptide was degraded within seconds in various plant cell extracts. This degradation could be prevented by the addition of specific protease inhibitors and by boiling the extract prior to adding the peptide. In addition, anionic detergents, in contrast to cationic, zwitter-ionic or non-ionic detergents, could prevent this degradation. Nevertheless, transgenic tobacco plants were evaluated for resistance toPseudomonas solanacearum, the causal agent of bacterial wilt of many crops, andP. syringae pv.tabaci, the causal agent of bacterial wildfire, which are highly susceptible to cecropin Bin vitro. No resistance was found. These experiments indicate that introduction and expression of cecropin B genes in tobacco does not result in detectable cecropin B protein levels and resistance to bacterial infections, most likely due to degradation of the protein by endogenous proteases.


PLOS ONE | 2010

Nicotiana benthamiana as a Production Platform for Artemisinin Precursors

Teun Wjm van Herpen; Katarina Cankar; Marilise Nogueira; Dirk Bosch; Harro J. Bouwmeester; Jules Beekwilder

Background Production of pharmaceuticals in plants provides an alternative for chemical synthesis, fermentation or natural sources. Nicotiana benthamiana is deployed at commercial scale for production of therapeutic proteins. Here the potential of this plant is explored for rapid production of precursors of artemisinin, a sesquiterpenoid compound that is used for malaria treatment. Methodology/Principal Findings Biosynthetic genes leading to artemisinic acid, a precursor of artemisinin, were combined and expressed in N. benthamiana by agro-infiltration. The first committed precursor of artemisinin, amorpha-4,11-diene, was produced upon infiltration of a construct containing amorpha-4,11-diene synthase, accompanied by 3-hydroxy-3-methylglutaryl-CoA reductase and farnesyl diphosphate synthase. Amorpha-4,11-diene was detected both in extracts and in the headspace of the N. benthamiana leaves. When the amorphadiene oxidase CYP71AV1 was co-infiltrated with the amorphadiene-synthesizing construct, the amorpha-4,11-diene levels strongly decreased, suggesting it was oxidized. Surprisingly, no anticipated oxidation products, such as artemisinic acid, were detected upon GC-MS analysis. However, analysis of leaf extracts with a non-targeted metabolomics approach, using LC-QTOF-MS, revealed the presence of another compound, which was identified as artemisinic acid-12-β-diglucoside. This compound accumulated to 39.5 mg.kg−1 fwt. Apparently the product of the heterologous pathway that was introduced, artemisinic acid, is further metabolized efficiently by glycosyl transferases that are endogenous to N. benthamiana. Conclusion/Significance This work shows that agroinfiltration of N. bentamiana can be used as a model to study the production of sesquiterpenoid pharmaceutical compounds. The interaction between the ectopically introduced pathway and the endogenous metabolism of the plant is discussed.


Applied and Environmental Microbiology | 2000

Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids.

R.A. de Maagd; Mieke Weemen-Hendriks; Willem J. Stiekema; Dirk Bosch

ABSTRACT In order to test our hypothesis that Bacillus thuringiensis delta-endotoxin Cry1Ca domain III functions as a determinant of specificity for Spodoptera exigua, regardless of the origins of domains I and II, we have constructed by cloning and in vivo recombination a collection of hybrid proteins containing domains I and II of various Cry1 toxins combined with domain III of Cry1Ca. Cry1Ab, Cry1Ac, Cry1Ba, Cry1Ea, and Cry1Fa all become more active against S. exigua when their domain III is replaced by (part of) that of Cry1Ca. This result shows that domain III of Cry1Ca is an important and versatile determinant of S. exigua specificity. The toxicity of the hybrids varied by a factor of 40, indicating that domain I and/or II modulate the activity as well. Cry1Da-Cry1Ca hybrids were an exception in that they were not significantly active against S. exigua or Manduca sexta, whereas both parental proteins were highly toxic. Incidentally, in a Cry1Ba-Cry1Ca hybrid, Cry1Ca domain III can also strongly increase toxicity for M. sexta.


Molecular Microbiology | 1999

Domain III of the Bacillus thuringiensis delta-endotoxin Cry1Ac is involved in binding to Manduca sexta brush border membranes and to its purified aminopeptidase N

R. A. De Maagd; Petra L. Bakker; Luke Masson; M. J. Adang; S. Sangadala; Willem J. Stiekema; Dirk Bosch

Three types of binding assays were used to study the binding of Bacillus thuringiensis delta‐endotoxin Cry1Ac to brush border membrane vesicle (BBMV) membranes and a purified putative receptor of the target insect Manduca sexta. Using hybrid proteins consisting of Cry1Ac and the related Cry1C protein, it was shown that domain III of Cry1Ac is involved in specificity of binding as observed by all three techniques. In ligand blotting experiments using SDS–PAGE‐separated BBMV proteins as well as the purified putative receptor aminopeptidase N (APN), the presence of domain III of Cry1Ac in a hybrid with Cry1C was necessary and sufficient for specific binding to APN. Using the surface plasmon resonance (SPR) technique with immobilized APN, it was shown that the presence of domain III of Cry1Ac in a hybrid is sufficient for binding to one of the two previously identified Cry1Ac binding sites, whereas the second site requires the full Cry1Ac toxin for binding. In addition, the role of domain III in the very specific inhibition of Cry1Ac binding by the amino sugar N‐acetylgalactosamine (GalNAc) was determined. Both in ligand blotting and in surface plasmon resonance experiments, as well as in binding assays using intact BBMVs, it was shown that the presence of domain III of Cry1Ac in a toxin molecule is sufficient for the inhibition of binding by GalNAc. These and other results strongly suggest that domain III of delta‐endotoxins play a role in insect specificity through their involvement in specific binding to insect gut epithelial receptors.


FEBS Letters | 1997

Improving scFv antibody expression levels in the plant cytosol

A. Schouten; Jan Roosien; Jan de Boer; A. Wilmink; Marie-Noëlle Rosso; Dirk Bosch; Willem J. Stiekema; F.J. Gommers; Jaap Bakker; Arjen Schots

Expression of single‐chain antibody fragments (scFvs) in the plant cytosol is often cumbersome. It was unexpectedly shown that addition at the C‐terminus of the ER retention signal KDEL resulted in significantly improved expression levels. In this report the cytosolic location of the scFv‐CK was confirmed, excluding possible mistranslocation to other subcellular compartments. It was shown that expression of several other scFvs was also improved in tobacco protoplasts. In addition expression was improved in transgenic potato. Changing from KDEL to KDEI did not affect the enhanced protein expression level. Addition of the KDEL motif is a simple and straightforward tool to stabilize in planta cytosolic expression of many scFvs.

Collaboration


Dive into the Dirk Bosch's collaboration.

Top Co-Authors

Avatar

Willem J. Stiekema

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Arjen Schots

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jules Beekwilder

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Maurice Henquet

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

L.J.W.J. Gilissen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Maarten A. Jongsma

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Hans Bakker

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.J.M. Smulders

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Wilco Jordi

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge