Louie H. Yang
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Louie H. Yang.
The American Naturalist | 2003
Daniel I. Bolnick; Richard Svanbäck; James A. Fordyce; Louie H. Yang; Jeremy Martin Davis; C. Darrin Hulsey; Matthew L. Forister
Most empirical and theoretical studies of resource use and population dynamics treat conspecific individuals as ecologically equivalent. This simplification is only justified if interindividual niche variation is rare, weak, or has a trivial effect on ecological processes. This article reviews the incidence, degree, causes, and implications of individual‐level niche variation to challenge these simplifications. Evidence for individual specialization is available for 93 species distributed across a broad range of taxonomic groups. Although few studies have quantified the degree to which individuals are specialized relative to their population, between‐individual variation can sometimes comprise the majority of the population’s niche width. The degree of individual specialization varies widely among species and among populations, reflecting a diverse array of physiological, behavioral, and ecological mechanisms that can generate intrapopulation variation. Finally, individual specialization has potentially important ecological, evolutionary, and conservation implications. Theory suggests that niche variation facilitates frequency‐dependent interactions that can profoundly affect the population’s stability, the amount of intraspecific competition, fitness‐function shapes, and the population’s capacity to diversify and speciate rapidly. Our collection of case studies suggests that individual specialization is a widespread but underappreciated phenomenon that poses many important but unanswered questions.
Ecology | 2002
Daniel I. Bolnick; Louie H. Yang; James A. Fordyce; Jeremy Martin Davis; Richard Svanbäck
Many apparently generalized species are in fact composed of individual specialists that use a small subset of the populations resource distribution. Niche variation is usually established by testing the null hypothesis that individuals draw from a common resource distribution. This approach encourages a publication bias in which negative results are rarely reported, and obscures variation in the degree of individual specialization, limiting our ability to carry out comparative studies of the causes or consequences of niche variation. To facilitate studies of the degree of individual specialization, this paper outlines four quantitative indices of intrapopulation variation in resource use. Traditionally, such variation has been measured by partitioning the populations total niche width into within- and between-individual, sex, or phenotype components. We suggest two alternative measures that quantify the mean resource overlap between an individual and its population, and we discuss the advantages and disadvantages of all four measures. The utility of all indices depends on the quality of the empirical data. If resources are measured in a coarse-grained manner, individuals may falsely appear generalized. Alternatively, specialization may be overestimated by cross-sectional sampling schemes where diet variation can reflect a patchy environment. Isotope ratios, parasites, or diet-morphology correlations can complement cross-sectional data to establish temporal consistency of individual specialization.
Ecology | 2008
Louie H. Yang; Justin L. Bastow; Kenneth O. Spence; Amber N. Wright
An increasing number of studies in a wide range of natural systems have investigated how pulses of resource availability influence ecological processes at individual, population, and community levels. Taken together, these studies suggest that some common processes may underlie pulsed resource dynamics in a wide diversity of systems. Developing a common framework of terms and concepts for the study of resource pulses may facilitate greater synthesis among these apparently disparate systems. Here, we propose a general definition of the resource pulse concept, outline some common patterns in the causes and consequences of resource pulses, and suggest a few key questions for future investigations. We define resource pulses as episodes of increased resource availability in space and time that combine low frequency (rarity), large magnitude (intensity), and short duration (brevity), and emphasize the importance of considering resource pulses at spatial and temporal scales relevant to specific resource-onsumer interactions. Although resource pulses are uncommon events for consumers in specific systems, our review of the existing literature suggests that pulsed resource dynamics are actually widespread phenomena in nature. Resource pulses often result from climatic and environmental factors, processes of spatiotemporal accumulation and release, outbreak population dynamics, or a combination of these factors. These events can affect life history traits and behavior at the level of individual consumers, numerical responses at the population level, and indirect effects at the community level. Consumers show strategies for utilizing ephemeral resources opportunistically, reducing resource variability by averaging over larger spatial scales, and tolerating extended interpulse periods of reduced resource availability. Resource pulses can also create persistent effects in communities through several mechanisms. We suggest that the study of resource pulses provides opportunities to understand the dynamics of many specific systems, and may also contribute to broader ecological questions at individual, population, and community levels.
Ecology Letters | 2010
Louie H. Yang; Volker H. W. Rudolf
Climate change is altering the phenology of many species and the timing of their interactions with other species, but the impacts of these phenological shifts on species interactions remain unclear. Classical approaches to the study of phenology have typically documented changes in the timing of single life-history events, while phenological shifts affect many interactions over entire life histories. In this study, we suggest an approach that integrates the phenology and ontogeny of species interactions with a fitness landscape to provide a common mechanistic framework for investigating phenological shifts. We suggest that this ontogeny-phenology landscape provides a flexible method to document changes in the relative phenologies of interacting species, examine the causes of these phenological shifts, and estimate their consequences for interacting species.
Ecological Monographs | 2010
Louie H. Yang; Kyle F. Edwards; Jarrett E. Byrnes; Justin L. Bastow; Amber N. Wright; Kenneth O. Spence
Resource pulses are infrequent, large-magnitude, and short-duration events of increased resource availability. They include a diverse set of extreme events in a wide range of ecosystems, but identifying general patterns among the diversity of pulsed resource phenomena in nature remains an important challenge. Here we present a meta-analysis of resource pulse-consumer interactions that addresses four key questions: (1) Which characteristics of pulsed resources best predict their effects on consumers? (2) Which characteristics of consumers best predict their responses to resource pulses? (3) How do the effects of resource pulses differ in different ecosystems? (4) What are the indirect effects of resource pulses in communities? To investigate these questions, we built a data set of diverse pulsed resource-consumer interactions from around the world, developed metrics to compare the effects of resource pulses across disparate systems, and conducted multilevel regression analyses to examine the manner in which variation in the characteristics of resource pulse- consumer interactions affects important aspects of consumer responses. Resource pulse magnitude, resource trophic level, resource pulse duration, ecosystem type and subtype, consumer response mechanisms, and consumer body mass were found to be key explanatory factors predicting the magnitude, duration, and timing of consumer responses. Larger consumers showed more persistent responses to resource pulses, and reproductive responses were more persistent than aggregative responses. Aquatic systems showed shorter temporal lags between peaks of resource availability and consumer response compared to terrestrial systems, and temporal lags were also shorter for smaller consumers compared to larger consumers. The magnitude of consumer responses relative to their resource pulses was generally smaller for the direct consumers of primary resource pulses, compared to consumers at greater trophic distances from the initial resource pulse. In specific systems, this data set showed both attenuating and amplifying indirect effects. We consider the mechanistic processes behind these patterns and their implications for the ecology of resource pulses.
Ecology Letters | 2014
Richard Karban; Louie H. Yang; Kyle F. Edwards
Volatile communication between plants causing enhanced defence has been controversial. Early studies were not replicated, and influential reviews questioned the validity of the phenomenon. We collected 48 well-replicated studies and found overall support for the hypothesis that resistance increased for individuals with damaged neighbours. Laboratory or greenhouse studies and those conducted on agricultural crops showed stronger induced resistance than field studies on undomesticated species, presumably because other variation had been reduced. A cumulative analysis revealed that early, non-replicated studies were more variable and showed less evidence for communication. Effects of habitat and plant growth form were undetectable. In most cases, the mechanisms of resistance and alternative hypotheses were not considered. There was no indication that some response variables were more likely to produce large effects. These results indicate that plants of diverse taxonomic affinities and ecological conditions become more resistant to herbivores when exposed to volatiles from damaged neighbours.
Nature plants | 2015
Philip A. Fay; Suzanne M. Prober; W. Stanley Harpole; Johannes M. H. Knops; Jonathan D. Bakker; Elizabeth T. Borer; Eric M. Lind; Andrew S. MacDougall; Eric W. Seabloom; Peter D. Wragg; Peter B. Adler; Dana M. Blumenthal; Yvonne M. Buckley; Chengjin Chu; Elsa E. Cleland; Scott L. Collins; Kendi F. Davies; Guozhen Du; Xiaohui Feng; Jennifer Firn; Daniel S. Gruner; Nicole Hagenah; Yann Hautier; Robert W. Heckman; Virginia L. Jin; Kevin P. Kirkman; Julia A. Klein; Laura M. Ladwig; Qi Li; Rebecca L. McCulley
Terrestrial ecosystem productivity is widely accepted to be nutrient limited1. Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP)2,3, the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized4–8. However, the extent to which terrestrial productivity is co-limited by nutrients other than N and P has remained unclear. Here, we report results from a standardized factorial nutrient addition experiment, in which we added N, P and potassium (K) combined with a selection of micronutrients (K+μ), alone or in concert, to 42 grassland sites spanning five continents, and monitored ANPP. Nutrient availability limited productivity at 31 of the 42 grassland sites. And pairwise combinations of N, P, and K+μ co-limited ANPP at 29 of the sites. Nitrogen limitation peaked in cool, high latitude sites. Our findings highlight the importance of less studied nutrients, such as K and micronutrients, for grassland productivity, and point to significant variations in the type and degree of nutrient limitation. We suggest that multiple-nutrient constraints must be considered when assessing the ecosystem-scale consequences of nutrient enrichment.
Ecology | 2008
Weston H. Nowlin; Michael J. Vanni; Louie H. Yang
Resource pulses affect productivity and dynamics in a diversity of ecosystems, including islands, forests, streams, and lakes. Terrestrial and aquatic systems differ in food web structure and biogeochemistry; thus they may also differ in their responses to resource pulses. However, there has been a limited attempt to compare responses across ecosystem types. Here, we identify similarities and differences in the causes and consequences of resource pulses in terrestrial and aquatic systems. We propose that different patterns of food web and ecosystem structure in terrestrial and aquatic systems lead to different responses to resource pulses. Two predictions emerge from a comparison of resource pulses in the literature: (1) the bottom-up effects of resource pulses should transmit through aquatic food webs faster because of differences in the growth rates, life history, and stoichiometry of organisms in aquatic vs. terrestrial systems, and (2) the impacts of resource pulses should also persist longer in terrestrial systems because of longer generation times, the long-lived nature of many terrestrial resource pulses, and reduced top-down effects of consumers in terrestrial systems compared to aquatic systems. To examine these predictions, we use a case study of a resource pulse that affects both terrestrial and aquatic systems: the synchronous emergence of periodical cicadas (Magicicada spp.) in eastern North American forests. In general, studies that have examined the effects of periodical cicadas on terrestrial and aquatic systems support the prediction that resource pulses transmit more rapidly in aquatic systems; however, support for the prediction that resource pulse effects persist longer in terrestrial systems is equivocal. We conclude that there is a need to elucidate the indirect effects and long-term implications of resource pulses in both terrestrial and aquatic ecosystems.
PLOS ONE | 2012
Judy A. Stamps; Louie H. Yang; Vanessa Morales; Kyria Boundy-Mills
Drosophila melanogaster adults and larvae, but especially larvae, had profound effects on the densities and community structure of yeasts that developed in banana fruits. Pieces of fruit exposed to adult female flies previously fed fly-conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies, supporting previous suggestions that adult Drosophila vector yeasts to new substrates. However, larvae alone had dramatic effects on yeast density and species composition. When yeast densities were compared in pieces of the same fruits assigned to different treatments, fruits that developed low yeast densities in the absence of flies developed significantly higher yeast densities when exposed to larvae. Across all of the fruits, larvae regulated yeast densities within narrow limits, as compared to a much wider range of yeast densities that developed in pieces of the same fruits not exposed to flies. Larvae also affected yeast species composition, dramatically reducing species diversity across fruits, reducing variation in yeast communities from one fruit to the next (beta diversity), and encouraging the consistent development of a yeast community composed of three species of yeast (Candida californica, C. zemplinina, and Pichia kluvyeri), all of which were palatable to larvae. Larvae excreted viable cells of these three yeast species in their fecal pools, and discouraged the growth of filamentous fungi, processes which may have contributed to their effects on the yeast communities in banana fruits. These and other findings suggest that D. melanogaster adults and their larval offspring together engage in ‘niche construction’, facilitating a predictable microbial environment in the fruit substrates in which the larvae live and develop.
Integrative and Comparative Biology | 2010
Andrew Sih; Judy A. Stamps; Louie H. Yang; Richard McElreath; Marilyn Ramenofsky
A major grand challenge in biology is to understand the interactions between an organism and its environment. Behavior resides in the central core of this association as it affects and is affected by development, physiology, ecological dynamics, environmental choice, and evolution. We present this central role of behavior in a diagram illustrating the multifaceted program emphasizing the necessity for understanding this nexus and to fully appreciate the organism in its environment given the ongoing changes affected by contemporary human induced, rapid environmental change (HIREC). We call for the consideration of educational and research focuses to concentrate on the interdisciplinary role that behavior plays in the integration of biological processes.