Louis C. Dore
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Louis C. Dore.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Louis C. Dore; Julio D. Amigo; Camila O. dos Santos; Zhe Zhang; Xiaowu Gai; John W. Tobias; Duonan Yu; Alyssa M. Klein; Christine M. Dorman; Weisheng Wu; Ross C. Hardison; Barry H. Paw; Mitchell J. Weiss
MicroRNAs (miRNAs) control tissue development, but their mechanism of regulation is not well understood. We used a gene complementation strategy combined with microarray screening to identify miRNAs involved in the formation of erythroid (red blood) cells. Two conserved miRNAs, miR 144 and miR 451, emerged as direct targets of the critical hematopoietic transcription factor GATA-1. In vivo, GATA-1 binds a distal upstream regulatory element to activate RNA polymerase II-mediated transcription of a single common precursor RNA (pri-miRNA) encoding both mature miRNAs. Zebrafish embryos depleted of miR 451 by using antisense morpholinos form erythroid precursors, but their development into mature circulating red blood cells is strongly and specifically impaired. These results reveal a miRNA locus that is required for erythropoiesis and uncover a new regulatory axis through which GATA-1 controls this process.
Genes & Development | 2010
Duonan Yu; Camila O. dos Santos; Guo-wei Zhao; Jing Jiang; Julio D. Amigo; Eugene Khandros; Louis C. Dore; Yu Yao; Janine D'Souza; Zhe Zhang; Saghi Ghaffari; John K. Choi; Sherree Friend; Wei Tong; Jordan S. Orange; Barry H. Paw; Mitchell J. Weiss
The bicistronic microRNA (miRNA) locus miR-144/451 is highly expressed during erythrocyte development, although its physiological roles are poorly understood. We show that miR-144/451 ablation in mice causes mild erythrocyte instability and increased susceptibility to damage after exposure to oxidant drugs. This phenotype is deeply conserved, as miR-451 depletion synergizes with oxidant stress to cause profound anemia in zebrafish embryos. At least some protective activities of miR-451 stem from its ability to directly suppress production of 14-3-3zeta, a phospho-serine/threonine-binding protein that inhibits nuclear accumulation of transcription factor FoxO3, a positive regulator of erythroid anti-oxidant genes. Thus, in miR-144/451(-/-) erythroblasts, 14-3-3zeta accumulates, causing partial relocalization of FoxO3 from nucleus to cytoplasm with dampening of its transcriptional program, including anti-oxidant-encoding genes Cat and Gpx1. Supporting this mechanism, overexpression of 14-3-3zeta in erythroid cells and fibroblasts inhibits nuclear localization and activity of FoxO3. Moreover, shRNA suppression of 14-3-3zeta protects miR-144/451(-/-) erythrocytes against peroxide-induced destruction, and restores catalase activity. Our findings define a novel miRNA-regulated pathway that protects erythrocytes against oxidant stress, and, more generally, illustrate how a miRNA can influence gene expression by altering the activity of a key transcription factor.
Molecular and Cellular Biology | 2005
Veerendra Munugalavadla; Louis C. Dore; Bai Lin Tan; Li Hong; Melanie Vishnu; Mitchell J. Weiss; Reuben Kapur
ABSTRACT Stem cell factor (SCF), erythropoietin (Epo), and GATA-1 play an essential role(s) in erythroid development. We examined how these proteins interact functionally in G1E cells, a GATA-1− erythroblast line that proliferates in an SCF-dependent fashion and, upon restoration of GATA-1 function, undergoes GATA-1 proliferation arrest and Epo-dependent terminal maturation. We show that SCF-induced cell cycle progression is mediated via activation of the Src kinase/c-Myc pathway. Restoration of GATA-1 activity induced G1 cell cycle arrest coincident with repression of c-Kit and its downstream effectors Vav1, Rac1, and Akt. Sustained expression of each of these individual signaling components inhibited GATA-1-induced cell cycle arrest to various degrees but had no effects on the expression of GATA-1-regulated erythroid maturation markers. Chromatin immunoprecipitation analysis revealed that GATA-1 occupies a defined Kit gene regulatory element in vivo, suggesting a direct mechanism for gene repression. Hence, in addition to its well-established function as an activator of erythroid genes, GATA-1 also participates in a distinct genetic program that inhibits cell proliferation by repressing the expression of multiple components of the c-Kit signaling axis. Our findings reveal a novel aspect of molecular cross talk between essential transcriptional and cytokine signaling components of hematopoietic development.
Journal of Clinical Investigation | 2007
Xiang Yu; Yi Kong; Louis C. Dore; Osheiza Abdulmalik; Anne M. Katein; Suiping Zhou; John K. Choi; David A. Gell; Joel P. Mackay; Andrew J. Gow; Mitchell J. Weiss
Erythrocyte precursors produce abundant alpha- and beta-globin proteins, which assemble with each other to form hemoglobin A (HbA), the major blood oxygen carrier. alphaHb-stabilizing protein (AHSP) binds free alpha subunits reversibly to maintain their structure and limit their ability to generate reactive oxygen species. Accordingly, loss of AHSP aggravates the toxicity of excessive free alpha-globin caused by beta-globin gene disruption in mice. Surprisingly, we found that AHSP also has important functions when free alpha-globin is limited. Thus, compound mutants lacking both Ahsp and 1 of 4 alpha-globin genes (genotype Ahsp(-/-)alpha-globin*(alpha/alphaalpha)) exhibited more severe anemia and Hb instability than mice with either mutation alone. In vitro, recombinant AHSP promoted folding of newly translated alpha-globin, enhanced its refolding after denaturation, and facilitated its incorporation into HbA. Moreover, in erythroid precursors, newly formed free alpha-globin was destabilized by loss of AHSP. Therefore, in addition to its previously defined role in detoxification of excess alpha-globin, AHSP also acts as a molecular chaperone to stabilize nascent alpha-globin for HbA assembly. Our findings illustrate what we believe to be a novel adaptive mechanism by which a specialized cell coordinates high-level production of a multisubunit protein and protects against various synthetic imbalances.
Developmental Cell | 2009
Takahiro Maeda; Keisuke Ito; Taha Merghoub; Laura Poliseno; Robin M. Hobbs; Guocan Wang; Lin Dong; Manami Maeda; Louis C. Dore; Arthur Zelent; Lucio Luzzatto; Julie Teruya-Feldstein; Mitchell J. Weiss; Pier Paolo Pandolfi
GATA-1-dependent transcription is essential for erythroid differentiation and maturation. Suppression of programmed cell death is also thought to be critical for this process; however, the link between these two features of erythropoiesis has remained elusive. Here, we show that the POZ-Krüppel family transcription factor, LRF (also known as Zbtb7a/Pokemon), is a direct target of GATA1 and plays an essential antiapoptotic role during terminal erythroid differentiation. We find that loss of Lrf leads to lethal anemia in embryos, due to increased apoptosis of late-stage erythroblasts. This programmed cell death is Arf and p53 independent and is instead mediated by upregulation of the proapoptotic factor Bim. We identify Lrf as a direct repressor of Bim transcription. In strong support of this mechanism, genetic Bim loss delays the lethality of Lrf-deficient embryos and rescues their anemia phenotype. Thus, our data define a key transcriptional cascade for effective erythropoiesis, whereby GATA-1 suppresses BIM-mediated apoptosis via LRF.
Journal of Biological Chemistry | 2008
Camila O. dos Santos; Louis C. Dore; Eric Valentine; Suresh G. Shelat; Ross C. Hardison; Manik C. Ghosh; Wei Wang; Richard S. Eisenstein; Fernando Ferreira Costa; Mitchell J. Weiss
Hemoglobin production during erythropoiesis is mechanistically coupled to the acquisition and metabolism of iron. We discovered that iron regulates the expression of α-hemoglobin-stabilizing protein (AHSP), a molecular chaperone that binds and stabilizes free α-globin during hemoglobin synthesis. In primates, the 3′-untranslated region (UTR) of AHSP mRNA contains a nucleotide sequence resembling iron responsive elements (IREs), stem-loop structures that regulate gene expression post-transcriptionally by binding iron regulatory proteins (IRPs). The AHSP IRE-like stem-loop deviates from classical consensus sequences and binds IRPs poorly in electrophoretic mobility shift assays. However, in cytoplasmic extracts, AHSP mRNA co-immunoprecipitates with IRPs in a fashion that is dependent on the stem-loop structure and inhibited by iron. Moreover, this interaction enhances AHSP mRNA stability in erythroid and heterologous cells. Our findings demonstrate that IRPs can regulate mRNA expression through non-canonical IREs and extend the repertoire of known iron-regulated genes. In addition, we illustrate a new mechanism through which hemoglobin may be modulated according to iron status.
Genome Research | 2008
Yong Cheng; David C. King; Louis C. Dore; Xinmin Zhang; Yuepin Zhou; Ying Zhang; Christine M. Dorman; Demesew Abebe; Swathi Ashok Kumar; Francesca Chiaromonte; Webb Miller; Roland D. Green; Mitchell J. Weiss; Ross C. Hardison
Tissue development and function are exquisitely dependent on proper regulation of gene expression, but it remains controversial whether the genomic signals controlling this process are subject to strong selective constraint. While some studies show that highly constrained noncoding regions act to enhance transcription, other studies show that DNA segments with biochemical signatures of regulatory regions, such as occupancy by a transcription factor, are seemingly unconstrained across mammalian evolution. To test the possible correlation of selective constraint with enhancer activity, we used chromatin immunoprecipitation as an approach unbiased by either evolutionary constraint or prior knowledge of regulatory activity to identify DNA segments within a 66-Mb region of mouse chromosome 7 that are occupied by the erythroid transcription factor GATA1. DNA segments bound by GATA1 were identified by hybridization to high-density tiling arrays, validated by quantitative PCR, and tested for gene regulatory activity in erythroid cells. Whereas almost all of the occupied segments contain canonical WGATAR binding site motifs for GATA1, in only 45% of the cases is the motif deeply preserved (found at the orthologous position in placental mammals or more distant species). However, GATA1-bound segments with high enhancer activity tend to be the ones with an evolutionarily preserved WGATAR motif, and this relationship was confirmed by a loss-of-function assay. Thus, GATA1 binding sites that regulate gene expression during erythroid maturation are under strong selective constraint, while nonconstrained binding may have only a limited or indirect role in regulation.
Genome Research | 2006
Hao Wang; Ying Zhang; Yong Cheng; Yuepin Zhou; David C. King; James Taylor; Francesca Chiaromonte; Jyotsna Kasturi; Hanna Petrykowska; Brian Gibb; Christine M. Dorman; Webb Miller; Louis C. Dore; John J. Welch; Mitchell J. Weiss; Ross C. Hardison
Blood | 2007
Louis C. Dore; Camila O. dos Santos; Julio D. Amigo; Christine M. Dorman; Weisheng Wu; Ross C. Hardison; Barry H. Paw; Mitchell J. Weiss
Blood | 2006
Xiang Yu; Yi Kong; Louis C. Dore; Anne M. Katein; John K. Choi; Andrew J. Gow; Mitchell J. Weiss