Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louis D'Hendecourt is active.

Publication


Featured researches published by Louis D'Hendecourt.


Science | 2006

Organics captured from comet 81P/Wild 2 by the Stardust spacecraft

Scott A. Sandford; Jérôme Aléon; Conel M. Od. Alexander; Tohru Araki; Sas̆a Bajt; G. A. Baratta; Janet Borg; John P. Bradley; D. E. Brownlee; John Robert Brucato; Mark J. Burchell; Henner Busemann; Anna L. Butterworth; Simon J. Clemett; George D. Cody; L. Colangeli; George Cooper; Louis D'Hendecourt; Zahia Djouadi; Jason P. Dworkin; Gianluca Ferrini; Holger Fleckenstein; G. J. Flynn; Ian A. Franchi; Marc Douglas Fries; Mary K. Gilles; Daniel P. Glavin; Matthieu Gounelle; Faustine Grossemy; Chris Jacobsen

Organics found in comet 81P/Wild 2 samples show a heterogeneous and unequilibrated distribution in abundance and composition. Some organics are similar, but not identical, to those in interplanetary dust particles and carbonaceous meteorites. A class of aromatic-poor organic material is also present. The organics are rich in oxygen and nitrogen compared with meteoritic organics. Aromatic compounds are present, but the samples tend to be relatively poorer in aromatics than are meteorites and interplanetary dust particles. The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage. Although the variable extent of modification of these materials by impact capture is not yet fully constrained, a diverse suite of organic compounds is present and identifiable within the returned samples.


Science | 2006

Infrared Spectroscopy of Comet 81P/Wild 2 Samples Returned by Stardust

Lindsay P. Keller; Sasa Bajt; G. A. Baratta; Janet Borg; John P. Bradley; D. E. Brownlee; Henner Busemann; John Robert Brucato; Mark J. Burchell; L. Colangeli; Louis D'Hendecourt; Zahia Djouadi; Gianluca Ferrini; G. J. Flynn; Ian A. Franchi; Marc Douglas Fries; Monica M. Grady; Giles A. Graham; Faustine Grossemy; Anton T. Kearsley; Graciela Matrajt; Keiko Nakamura-Messenger; V. Mennella; Larry R. Nittler; M. E. Palumbo; Frank J. Stadermann; Peter Tsou; Alessandra Rotundi; Scott A. Sandford; Christopher J. Snead

Infrared spectra of material captured from comet 81P/Wild 2 by the Stardust spacecraft reveal indigenous aliphatic hydrocarbons similar to those in interplanetary dust particles thought to be derived from comets, but with longer chain lengths than those observed in the diffuse interstellar medium. Similarly, the Stardust samples contain abundant amorphous silicates in addition to crystalline silicates such as olivine and pyroxene. The presence of crystalline silicates in Wild 2 is consistent with mixing of solar system and interstellar matter. No hydrous silicates or carbonate minerals were detected, which suggests a lack of aqueous processing of Wild 2 dust.


Astronomy and Astrophysics | 2001

Structural and chemical alteration of crystalline olivine under low energy He + irradiation

K. Demyk; Ph. Carrez; Hugues Leroux; Patrick Cordier; A. P. Jones; J. Borg; Eric Quirico; P. I. Raynal; Louis D'Hendecourt

We present the results of irradiation experiments on crystalline olivine with He + ions at energies of 4 and 10 keV and fluences varying from 5 10 16 to 10 18 ions/cm 2 . The aim of these experiments is to simulate ion implantation into interstellar grains in shocks in the ISM. Irradiated samples were analysed by transmission electron microscopy (TEM). The irradiation causes the amorphization of the olivine, at all He + fluences considered. The thickness of the amorphized region is 40 15 nm and 90 10 nm for the 4 keV and 10 keV experiments, respectively. The amorphization of the olivine occurs in conjunction with an increase in the porosity of the material due to the formation of bubbles. In addition, the amorphized layer is decient in oxygen and magnesium. We nd that the O/Si and Mg/Si ratios decrease as the He + fluence increases. These experiments show that the irradiation of dust in supernova shocks can eciently alter the dust structure and composition. Our result are consistent with the lack of crystalline silicates in the interstellar medium and also with the compositional evolution observed from olivine-type silicates around evolved stars to pyroxene-type silicates around protostars.


The Astrophysical Journal | 2011

Non-racemic Amino Acid Production by Ultraviolet Irradiation of Achiral Interstellar Ice Analogs with Circularly Polarized Light

Pierre de Marcellus; Cornelia Meinert; Michel Nuevo; Jean-Jacques Filippi; Grégoire Danger; D. Deboffle; Laurent Nahon; Louis D'Hendecourt; Uwe J. Meierhenrich

The delivery of organic matter to the primitive Earth via comets and meteorites has long been hypothesized to be an important source for prebiotic compounds such as amino acids or their chemical precursors that contributed to the development of prebiotic chemistry leading, on Earth, to the emergence of life. Photochemistry of inter/circumstellar ices around protostellar objects is a potential process leading to complex organic species, although difficult to establish from limited infrared observations only. Here we report the first abiotic cosmic ice simulation experiments that produce species with enantiomeric excesses (e.e.s). Circularly polarized ultraviolet light (UV-CPL) from a synchrotron source induces asymmetric photochemistry on initially achiral inter/circumstellar ice analogs. Enantioselective multidimensional gas chromatography measurements show significant e.e.s of up to 1.34% for (13C)-alanine, for which the signs and absolute values are related to the helicity and number of CPL photons per deposited molecule. This result, directly comparable with some L excesses measured in meteorites, supports a scenario in which exogenous delivery of organics displaying a slight L excess, produced in an extraterrestrial environment by an asymmetric astrophysical process, is at the origin of biomolecular asymmetry on Earth. As a consequence, a fraction of the meteoritic organic material consisting of non-racemic compounds may well have been formed outside the solar system. Finally, following this hypothesis, we support the idea that the protosolar nebula has indeed been formed in a region of massive star formation, regions where UV-CPL of the same helicity is actually observed over large spatial areas.


Astronomy and Astrophysics | 2005

Ultraviolet photoproduction of ISM dust Laboratory characterisation and astrophysical relevance

E. Dartois; G. M. Muñoz Caro; D. Deboffle; Gilles Montagnac; Louis D'Hendecourt

The production of a hydrogenated amorphous carbon polymer (a-C:H) via the photolysis of a series of organic molecule precursors at low temperature is described. Such amorphous material is synthesised under interstellar conditions (10 K and Lyman-α photons) and represents the best candidate to explain the Diffuse Interstellar Medium absorption observed in our Galaxy and in other galaxies. We perform a series of laboratory analyses (Infrared spectroscopy, µspectroscopy, Raman, Photoluminescence and UV-visible spectroscopy) which allow a full characterisation of such polymers. This allows us to assess the importance of the polymer and possible scenarios for its role in crucial aspects of the lifecycle of dust. Such material has implications for the carbon budget at galactic scales, hydrogen formation, extended red emission, as a PAH precursor, and in explaining the 2175 A extinction bump.


Astronomy and Astrophysics | 2004

FTIR and Raman analyses of the Tagish Lake meteorite: Relationship with the aliphatic hydrocarbons observed in the Diffuse Interstellar Medium

G. Matrajt; Janet Borg; P. I. Raynal; Zahia Djouadi; Louis D'Hendecourt; G. J. Flynn; D. Deboffle

Using FTIR and Raman microspectroscopies we have analysed 6 fragments of the Tagish Lake meteorite. The data obtained show that all the fragments belong to the carbonate-rich lithology, where an organic material, including a highly disordered macromolecular carbonaceous component is found. The FTIR approach shows that part of the organic material present in Tagish Lake is aliphatic. The Raman approach shows that there is also highly disordered polyaromatic organic material, which is abundant. Furthermore, the comparison of Raman data of Tagish Lake to other carbonaceous chondrites (CI, CM2, CR2) shows that the carbon in Tagish Lake is different, supporting the assertion that this meteorite is a unique and new type of carbonaceous chondrite. The comparison of the aliphatic hydrocarbon FTIR data found in the Tagish Lake meteorite with the aliphatic hydrocarbon IR data of the carbonaceous chondrites Orgueil and Murchison and with the diffuse Interstellar Medium (ISM) shows that they are different, in that the Tagish Lake meteorite has longer aliphatic chains.


Astrobiology | 2010

Urea, Glycolic Acid, and Glycerol in an Organic Residue Produced by Ultraviolet Irradiation of Interstellar/Pre-Cometary Ice Analogs

Michel Nuevo; Jan Hendrik Bredehöft; Uwe J. Meierhenrich; Louis D'Hendecourt; Wolfram Thiemann

More than 50 stable organic molecules have been detected in the interstellar medium (ISM), from ground-based and onboard-satellite astronomical observations, in the gas and solid phases. Some of these organics may be prebiotic compounds that were delivered to early Earth by comets and meteorites and may have triggered the first chemical reactions involved in the origin of life. Ultraviolet irradiation of ices simulating photoprocesses of cold solid matter in astrophysical environments have shown that photochemistry can lead to the formation of amino acids and related compounds. In this work, we experimentally searched for other organic molecules of prebiotic interest, namely, oxidized acid labile compounds. In a setup that simulates conditions relevant to the ISM and Solar System icy bodies such as comets, a condensed CH(3)OH:NH(3) = 1:1 ice mixture was UV irradiated at approximately 80 K. The molecular constituents of the nonvolatile organic residue that remained at room temperature were separated by capillary gas chromatography and identified by mass spectrometry. Urea, glycolic acid, and glycerol were detected in this residue, as well as hydroxyacetamide, glycerolic acid, and glycerol amide. These organics are interesting target molecules to be searched for in space. Finally, tentative mechanisms of formation for these compounds under interstellar/pre-cometary conditions are proposed.


Astronomy and Astrophysics | 2011

Ion irradiation of carbonaceous interstellar analogues - Effects of cosmic rays on the 3.4 μm interstellar absorption band

Marguerite Godard; G. Féraud; M. Chabot; Y. Carpentier; T. Pino; R. Brunetto; J. Duprat; C. Engrand; Ph. Bréchignac; Louis D'Hendecourt; E. Dartois

Context. A 3.4 μm absorption band (around 2900 cm-1), assigned to aliphatic C-H stretching modes of hydrogenated amorphous carbons (a-C:H), is widely observed in the diffuse interstellar medium, but disappears or is modified in dense clouds. This spectral difference between different phases of the interstellar medium reflects the processing of dust in different environments. Cosmic ray bombardment is one of the interstellar processes that make carbonaceous dust evolve. Aims. We investigate the effects of cosmic rays on the interstellar 3.4 μm absorption band carriers. Methods. Samples of carbonaceous interstellar analogues (a-C:H and soot) were irradiated at room temperature by swift ions with energy in the MeV range (from 0.2 to 160 MeV). The dehydrogenation and chemical bonding modifications that occurred during irradiation were studied with IR spectroscopy. Results. For all samples and all ions/energies used, we observed a decrease of the aliphatic C-H absorption bands intensity with the ion fluence. This evolution agrees with a model that describes the hydrogen loss as caused by the molecular recombination of two free H atoms created by the breaking of C-H bonds by the impinging ions. The corresponding destruction cross section and asymptotic hydrogen content are obtained for each experiment and their behaviour over a large range of ion stopping powers are inferred. Using elemental abundances and energy distributions of galactic cosmic rays, we investigated the implications of these results in different astrophysical environments. The results are compared to the processing by UV photons and H atoms in different regions of the interstellar medium. Conclusions. The destruction of aliphatic C-H bonds by cosmic rays occurs in characteristic times of a few 108 years, and it appears that even at longer time scales, cosmic rays alone cannot explain the observed disappearance of this spectral signature in dense regions. In diffuse interstellar medium, the formation by atomic hydrogen prevails over the destruction by UV photons (destruction by cosmic rays is negligible in these regions). Only the cosmic rays can penetrate into dense clouds and process the corresponding dust. However, they are not efficient enough to completely dehydrogenate the 3.4 μm carriers during the cloud lifetime. This interstellar component should be destroyed in interfaces between diffuse and dense interstellar regions where photons still penetrate but hydrogen is in molecular form.


Astronomy and Astrophysics | 2006

The effects of circularly polarized light on amino acid enantiomers produced by the UV irradiation of interstellar ice analogs

M. Nuevo; Uwe J. Meierhenrich; G. M. Muñoz Caro; E. Dartois; Louis D'Hendecourt; D. Deboffle; G. Auger; Didier Blanot; Jan Hendrik Bredehöft; Laurent Nahon

Two irradiation experiments on interstellar ice analogs at 80 K under interstellar-like conditions were performed with the LURE SU5 synchrotron beamline to assess, for the first time, the photochemical effect of circularly polarized ultraviolet light (UV CPL) at 167 nm (7.45 eV) with right and left polarizations on such ice mixtures. Methods. This effect was measured by determining the enantiomeric excesses (e.e.s) for two amino acids formed in the solid organic residues produced during the subsequent warm-up of the irradiated samples to room temperature: alanine, the most abundant chiral proteinaceous amino acid produced (both polarizations) and 2,3-diaminopropanoic acid (DAP), a non-proteinaceous amino acid (rightpolarization experiment). These excesses were compared to those measured for the same amino acids produced after unpolarized UV irradiation of the same ice mixtures (expected to be zero), in order to determine the contribution of CPL only. A careful estimate of all the associated uncertainties (statistical and systematic errors) was also developed. Results. It appears that the enantiomeric photochemical effect at this wavelength is weak, since both alanine and DAP e.e.s were found to be small, at most of the order of 1% in absolute values, and tends to be inconclusive since the effects obtained for both amino acids and both polarizations are not those expected. In light of these results, the hypothesis that CPL may be one source responsible for the e.e.s measured for such amino acids in some meteorites and, more generally, that CPL may be directly related to the origin of biomolecular homochirality on Earth is discussed.


Astronomy and Astrophysics | 2004

Organic matter in Seyfert 2 nuclei: Comparison with our Galactic center lines of sight

E. Dartois; O. Marco; G. M. Muñoz-Caro; K. J. Brooks; D. Deboffle; Louis D'Hendecourt

We present ESO - Very Large Telescope and ESA - Infrared Space Observatory 3 to 4 µm spectra of Seyfert 2 nuclei as compared to our galactic center lines of sight. The diffuse interstellar medium probed in both environments displays the characteristic 3.4 µm aliphatic CH stretch absorptions of refractory carbonaceous material. The profile of this absorption feature is similar in all sources, indicating the CH2/CH3 ratios of the carbon chains present in the refractory components of the grains are the same in Seyfert 2 inner regions. At longer wavelengths the circumstellar contamination of most of the galactic lines of sight precludes the identification of other absorption bands arising from the groups constitutive of the aliphatics seen at 3.4 µm. The clearer continuum produced by the Seyfert 2 nuclei represents promising lines of sight to constrain the existence or absence of strongly infrared active chemical groups such as the carbonyl one, important to understand the role of oxygen insertion in interstellar grains. The Spitzer Space Telescope spectrometer will soon allow one to investigate the importance of aliphatics on a much larger extragalactic sample.

Collaboration


Dive into the Louis D'Hendecourt's collaboration.

Top Co-Authors

Avatar

E. Dartois

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Deboffle

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janet Borg

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar

K. Demyk

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Pino

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar

Uwe J. Meierhenrich

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge