Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louis M. Luttrell is active.

Publication


Featured researches published by Louis M. Luttrell.


Nature | 1997

Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A

Yehia Daaka; Louis M. Luttrell; Robert J. Lefkowitz

Many of the G-protein-coupled receptors for hormones that bind to the cell surface can signal to the interior of the cell through several different classes of G protein. For example, although most of the actions of the prototype β2-adrenergic receptor are mediated through Gs proteins and the cyclic-AMP-dependent protein kinase (PKA) system, β-adrenergic receptors can also couple to Gi proteins. Here we investigate the mechanism that controls the specificity of this coupling. We show that in HEK293 cells, stimulation of mitogen-activated protein (MAP) kinase by the β2-adrenergic receptor is mediated by the βγ subunits of pertussis-toxin-sensitive G proteins through a pathway involving the non-receptor tyrosine kinase c-Src and the G protein Ras. Activation of this pathway by the β2-adrenergic receptor requires that the receptor be phosphorylated by PKA because it is blocked by H-89, an inhibitor of PKA. Additionally, a mutant of the receptor, which lacks the sites normally phosphorylated by PKA, can activate adenylyl cyclase, the enzyme that generates cAMP, but not MAP kinase. Our results demonstrate that a mechanism previously shown to mediate uncoupling of the β2-adrenergic receptor from Gs and thus heterologous desensitization (PKA-mediated receptor phosphorylation), also serves to ‘switch’ coupling of this receptor from Gs to Gi and initiate a new set of signalling events.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds.

Louis M. Luttrell; Francine L. Roudabush; Eric W. Choy; William E. Miller; Michael E. Field; Kristen L. Pierce; Robert J. Lefkowitz

Using both confocal immunofluorescence microscopy and biochemical approaches, we have examined the role of β-arrestins in the activation and targeting of extracellular signal-regulated kinase 2 (ERK2) following stimulation of angiotensin II type 1a receptors (AT1aR). In HEK-293 cells expressing hemagglutinin-tagged AT1aR, angiotensin stimulation triggered β-arrestin-2 binding to the receptor and internalization of AT1aR-β-arrestin complexes. Using red fluorescent protein-tagged ERK2 to track the subcellular distribution of ERK2, we found that angiotensin treatment caused the redistribution of activated ERK2 into endosomal vesicles that also contained AT1aR-β-arrestin complexes. This targeting of ERK2 reflects the formation of multiprotein complexes containing AT1aR, β-arrestin-2, and the component kinases of the ERK cascade, cRaf-1, MEK1, and ERK2. Myc-tagged cRaf-1, MEK1, and green fluorescent protein-tagged ERK2 coprecipitated with Flag-tagged β-arrestin-2 from transfected COS-7 cells. Coprecipitation of cRaf-1 with β-arrestin-2 was independent of MEK1 and ERK2, whereas the coprecipitation of MEK1 and ERK2 with β-arrestin-2 was significantly enhanced in the presence of overexpressed cRaf-1, suggesting that binding of cRaf-1 to β-arrestin facilitates the assembly of a cRaf-1, MEK1, ERK2 complex. The phosphorylation of ERK2 in β-arrestin complexes was markedly enhanced by coexpression of cRaf-1, and this effect is blocked by expression of a catalytically inactive dominant inhibitory mutant of MEK1. Stimulation with angiotensin increased the binding of both cRaf-1 and ERK2 to β-arrestin-2, and the association of β-arrestin-2, cRaf-1, and ERK2 with AT1aR. These data suggest that β-arrestins function both as scaffolds to enhance cRaf-1 and MEK-dependent activation of ERK2, and as targeting proteins that direct activated ERK to specific subcellular locations.


Current Opinion in Cell Biology | 1999

Regulation of tyrosine kinase cascades by G-protein-coupled receptors

Louis M. Luttrell; Yehia Daaka; Robert J. Lefkowitz

Mitogenic signaling by G-protein-coupled receptors (GPCRs) involves tyrosine phosphorylation of adaptor proteins and assembly of multiprotein Ras activation complexes. Over the past three years, three types of scaffolds for GPCR-directed complex assembly have been identified: transactivated receptor tyrosine kinases (RTKs), integrin-based focal adhesions, and GPCRs themselves. Nonreceptor tyrosine kinases play an important role in each case. The processes of GPCR desensitization and sequestration via clathrin-coated pits are also involved in signaling through the RTK- and GPCR-based scaffolds.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Independent β-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2

Huijun Wei; Seungkirl Ahn; Sudha K. Shenoy; Sadashiva S. Karnik; László Hunyady; Louis M. Luttrell; Robert J. Lefkowitz

Stimulation of a mutant angiotensin type 1A receptor (DRY/AAY) with angiotensin II (Ang II) or of a wild-type receptor with an Ang II analog ([sarcosine1,Ile4,Ile8]Ang II) fails to activate classical heterotrimeric G protein signaling but does lead to recruitment of β-arrestin 2-GFP and activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) (maximum stimulation ≈50% of wild type). This G protein-independent activation of mitogen-activated protein kinase is abolished by depletion of cellular β-arrestin 2 but is unaffected by the PKC inhibitor Ro-31-8425. In parallel, stimulation of the wild-type angiotensin type 1A receptor with Ang II robustly stimulates ERK1/2 activation with ≈60% of the response blocked by the PKC inhibitor (G protein dependent) and the rest of the response blocked by depletion of cellular β-arrestin 2 by small interfering RNA (β-arrestin dependent). These findings imply the existence of independent G protein- and β-arrestin 2-mediated pathways leading to ERK1/2 activation and the existence of distinct “active” conformations of a seven-membrane-spanning receptor coupled to each.


Journal of Biological Chemistry | 1996

Role of c-Src Tyrosine Kinase in G Protein-coupled Receptorand Gβγ Subunit-mediated Activation of Mitogen-activated Protein Kinases

Louis M. Luttrell; Brian E. Hawes; Tim van Biesen; Deirdre K. Luttrell; Timothy J. Lansing; Robert J. Lefkowitz

Several G protein-coupled receptors that interact with pertussis toxin-sensitive heterotrimeric G proteins mediate Ras-dependent activation of mitogen-activated protein (MAP) kinases. The mechanism involves Gβγ subunit-mediated increases in tyrosine phosphorylation of the Shc adapter protein, Shc·Grb2 complex formation, and recruitment of Ras guanine nucleotide exchange factor activity. We have investigated the role of the ubiquitous nonreceptor tyrosine kinase c-Src in activation of the MAP kinase pathway via endogenous G protein-coupled lysophosphatidic acid (LPA) receptors or by transient expression of Gβγ subunits in COS-7 cells. In vitro kinase assays of Shc immunoprecipitates following LPA stimulation demonstrated rapid, transient recruitment of tyrosine kinase activity into Shc immune complexes. Recruitment of tyrosine kinase activity was pertussis toxin-sensitive and mimicked by cellular expression of Gβγ subunits. Immunoblots for coprecipitated proteins in Shc immunoprecipitates revealed a transient association of Shc and c-Src following LPA stimulation, which coincided with increases in Shc-associated tyrosine kinase activity and Shc tyrosine phosphorylation. LPA stimulation or expression of Gβγ subunits resulted in c-Src activation, as assessed by increased c-Src autophosphorylation. Overexpression of wild-type or constitutively active mutant c-Src, but not kinase inactive mutant c-Src, lead to increased tyrosine kinase activity in Shc immunoprecipitates, increased Shc tyrosine phosphorylation, and Shc·Grb2 complex formation. MAP kinase activation resulting from LPA receptor stimulation, expression of Gβγ subunits, or expression of c-Src was sensitive to dominant negatives of mSos, Ras, and Raf. Coexpression of Csk, which inactivates Src family kinases by phosphorylating the regulatory C-terminal tyrosine residue, inhibited LPA stimulation of Shc tyrosine phosphorylation, Shc·Grb2 complex formation, and MAP kinase activation. These data suggest that Gβγ subunit-mediated formation of Shc·c-Src complexes and c-Src kinase activation are early events in Ras-dependent activation of MAP kinase via pertussis toxin-sensitive G protein-coupled receptors.


Journal of Biological Chemistry | 1998

Essential Role for G Protein-coupled Receptor Endocytosis in the Activation of Mitogen-activated Protein Kinase

Yehia Daaka; Louis M. Luttrell; Seungkirl Ahn; Gregory J. Della Rocca; Stephen S. G. Ferguson; Marc G. Caron; Robert J. Lefkowitz

The classical paradigm for G protein-coupled receptor (GPCR) signal transduction involves the agonist-dependent interaction of GPCRs with heterotrimeric G proteins at the plasma membrane and the subsequent generation, by membrane-localized effectors, of soluble second messengers or ion currents. Termination of GPCR signals follows G protein-coupled receptor kinase (GRK)- and β-arrestin-mediated receptor uncoupling and internalization. Here we show that these paradigms are inadequate to account for GPCR-mediated, Ras-dependent activation of the mitogen-activated protein (MAP) kinases Erk1 and -2. In HEK293 cells expressing dominant suppressor mutants of β-arrestin or dynamin, β2-adrenergic receptor-mediated activation of MAP kinase is inhibited. The inhibitors of receptor internalization specifically blocked Raf-mediated activation of MEK. Plasma membrane-delimited steps in the GPCR-mediated activation of the MAP kinase pathway, such as tyrosine phosphorylation of Shc and Raf kinase activation by Ras, are unaffected by inhibitors of receptor internalization. Thus, GRKs and β-arrestins, which uncouple GPCRs and target them for internalization, function as essential elements in the GPCR-mediated MAP kinase signaling cascade.


Journal of Biological Chemistry | 1997

Gβγ Subunits Mediate Src-dependent Phosphorylation of the Epidermal Growth Factor Receptor A SCAFFOLD FOR G PROTEIN-COUPLED RECEPTOR-MEDIATED Ras ACTIVATION

Louis M. Luttrell; Gregory J. Della Rocca; Tim van Biesen; Deirdre K. Luttrell; Robert J. Lefkowitz

In many cells, stimulation of mitogen-activated protein kinases by both receptor tyrosine kinases and receptors that couple to pertussis toxin-sensitive heterotrimeric G proteins proceed via convergent signaling pathways. Both signals are sensitive to inhibitors of tyrosine protein kinases and require Ras activation via phosphotyrosine-dependent recruitment of Ras guanine nucleotide exchange factors. Receptor tyrosine kinase stimulation mediates ligand-induced receptor autophosphorylation, which creates the initial binding sites for SH2 domain-containing docking proteins. However, the mechanism whereby G protein-coupled receptors mediate the phosphotyrosine-dependent assembly of a mitogenic signaling complex is poorly understood. We have studied the role of Src family nonreceptor tyrosine kinases in G protein-coupled receptor-mediated tyrosine phosphorylation in a transiently transfected COS-7 cell system. Stimulation of Gi-coupled lysophosphatidic acid and α2A adrenergic receptors or overexpression of Gβ1γ2 subunits leads to tyrosine phosphorylation of the Shc adapter protein, which then associates with tyrosine phosphoproteins of approximately 130 and 180 kDa, as well as Grb2. The 180-kDa Shc-associated tyrosine phosphoprotein band contains both epidermal growth factor (EGF) receptor and p185neu. 3-5-fold increases in EGF receptor but not p185neu tyrosine phosphorylation occur following Gi-coupled receptor stimulation. Inhibition of endogenous Src family kinase activity by cellular expression of a dominant negative kinase-inactive mutant of c-Src inhibits Gβ1γ2 subunit-mediated and Gi-coupled receptor-mediated phosphorylation of both EGF receptor and Shc. Expression of Csk, which inactivates Src family kinases by phosphorylating the regulatory carboxyl-terminal tyrosine residue, has the same effect. The Gi-coupled receptor-mediated increase in EGF receptor phosphorylation does not reflect increased EGF receptor autophosphorylation, assayed using an autophosphorylation-specific EGF receptor monoclonal antibody. Lysophosphatidic acid stimulates binding of EGF receptor to a GST fusion protein containing the c-Src SH2 domain, and this too is blocked by Csk expression. These data suggest that Gβγ subunit-mediated activation of Src family nonreceptor tyrosine kinases can account for the Gi-coupled receptor-mediated tyrosine phosphorylation events that direct recruitment of the Shc and Grb2 adapter proteins to the membrane.


Journal of Biological Chemistry | 1996

Phosphatidylinositol 3-Kinase Is an Early Intermediate in the Gβγ-mediated Mitogen-activated Protein Kinase Signaling Pathway

Brian E. Hawes; Louis M. Luttrell; Tim van Biesen; Robert J. Lefkowitz

The βγ-subunit of Gi mediates mitogen-activated protein (MAP) kinase activation through a signaling pathway involving Shc tyrosine phosphorylation, subsequent formation of a multiprotein complex including Shc, Grb2, and Sos, and sequential activation of Ras, Raf, and MEK. The mechanism by which Gβγ mediates tyrosine phosphorylation of Shc, however, is unclear. This study assesses the role of phosphatidylinositol 3-kinase (PI-3K) in Gβγ-mediated MAP kinase activation. We show that Gi-coupled receptor- and Gβγ-stimulated MAP kinase activation is attenuated by the PI-3K inhibitors wortmannin and LY294002 or by overexpression of a dominant negative mutant of the p85 subunit of PI-3K. Wortmannin and LY294002 also inhibit Gi-coupled receptor-stimulated Ras activation. The PI-3K inhibitors do not affect MAP kinase activation stimulated by overexpression of Sos, a constitutively active mutant of Ras, or a constitutively active mutant of MEK. These results demonstrate that PI-3K activity is required in the Gβγ-mediated MAP kinase signaling pathway at a point upstream of Sos and Ras activation.


Oncogene | 2001

New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades.

Kristen L. Pierce; Louis M. Luttrell; Robert J. Lefkowitz

Activation of classical second messenger cascades cannot fully explain the recently appreciated roles of heptahelical, or G-protein coupled receptors (GPCRs), in stimulation of mitogen activated protein kinase (MAPK) cascades. Rather, several distinct signaling mechanisms appear to contribute to GPCR-mediated MAPK activation. These include transactivation of the Epidermal Growth Factor Receptor (EGFR) via the autocrine/paracrine release of EGF-like ligands at the cell surface and scaffolding of MAPK cascades. A significant advance in the understanding of how GPCRs activate MAPK cascades is the discovery that β-arrestin, a protein well known for its roles in both receptor desensitization and internalization, serves as a scaffolding protein for at least two GPCR stimulated MAPK cascades, the extracellular signal regulated kinase (ERK) cascade and the c-jun N-terminal kinase 3 (JNK3) cascade. Together, these novel mechanisms of GPCR-mediated MAPK regulation may permit GPCRs in specific situations to control the temporal and spatial activity of MAPKs and thereby determine the consequences of GPCR stimulation with respect to transcriptional activation, cell proliferation and apoptosis.


Journal of Biological Chemistry | 2006

Distinct β-Arrestin- and G Protein-dependent Pathways for Parathyroid Hormone Receptor-stimulated ERK1/2 Activation

Diane Gesty-Palmer; Minyong Chen; Eric Reiter; Seungkirl Ahn; Christopher D. Nelson; Shuntai Wang; Allen E. Eckhardt; Conrad L. Cowan; Robert F. Spurney; Louis M. Luttrell; Robert J. Lefkowitz

Parathyroid hormone (PTH) regulates calcium homeostasis via the type I PTH/PTH-related peptide (PTH/PTHrP) receptor (PTH1R). The purpose of the present study was to identify the contributions of distinct signaling mechanisms to PTH-stimulated activation of the mitogen-activated protein kinases (MAPK) ERK1/2. In Human embryonic kidney 293 (HEK293) cells transiently transfected with hPTH1R, PTH stimulated a robust increase in ERK activity. The time course of ERK1/2 activation was biphasic with an early peak at 10 min and a later sustained ERK1/2 activation persisting for greater than 60 min. Pretreatment of HEK293 cells with the PKA inhibitor H89 or the PKC inhibitor GF109203X, individually or in combination reduced the early component of PTH-stimulated ERK activity. However, these inhibitors of second messenger dependent kinases had little effect on the later phase of PTH-stimulated ERK1/2 phosphorylation. This later phase of ERK1/2 activation at 30–60 min was blocked by depletion of cellular β-arrestin 2 and β-arrestin 1 by small interfering RNA. Furthermore, stimulation of hPTH1R with PTH analogues, [Trp1]PTHrp-(1–36) and [d-Trp12,Tyr34]PTH-(7–34), selectively activated Gs/PKA-mediated ERK1/2 activation or G protein-independent/β-arrestin-dependent ERK1/2 activation, respectively. It is concluded that PTH stimulates ERK1/2 through several distinct signal transduction pathways: an early G protein-dependent pathway meditated by PKA and PKC and a late pathway independent of G proteins mediated through β-arrestins. These findings imply the existence of distinct active conformations of the hPTH1R responsible for the two pathways, which can be stimulated by unique ligands. Such ligands may have distinct and valuable therapeutic properties.

Collaboration


Dive into the Louis M. Luttrell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mi-Hye Lee

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Deirdre K. Luttrell

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hesham M. El-Shewy

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Ayad A. Jaffa

American University of Beirut

View shared research outputs
Top Co-Authors

Avatar

Kristen L. Pierce

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Brian E. Hawes

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yehia Daaka

Howard Hughes Medical Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge