Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mi-Hye Lee is active.

Publication


Featured researches published by Mi-Hye Lee.


Nature Genetics | 2001

Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption.

Mi-Hye Lee; Kangmo Lu; Star Hazard; Hongwei Yu; Sergey Shulenin; Hideki Hidaka; Hideto Kojima; Rando Allikmets; Nagahiko Sakuma; Rosemary J. Pegoraro; Anand Srivastava; Gerald Salen; Michael Dean; Shailendra B. Patel

The molecular mechanisms regulating the amount of dietary cholesterol retained in the body, as well as the bodys ability to exclude selectively other dietary sterols, are poorly understood. An average western diet will contain about 250–500 mg of dietary cholesterol and about 200–400 mg of non-cholesterol sterols. About 50–60% of the dietary cholesterol is absorbed and retained by the normal human body, but less than 1% of the non-cholesterol sterols are retained. Thus, there exists a subtle mechanism that allows the body to distinguish between cholesterol and non-cholesterol sterols. In sitosterolemia, a rare autosomal recessive disorder, affected individuals hyperabsorb not only cholesterol but also all other sterols, including plant and shellfish sterols from the intestine. The major plant sterol species is sitosterol; hence the name of the disorder. Consequently, patients with this disease have very high levels of plant sterols in the plasma and develop tendon and tuberous xanthomas, accelerated atherosclerosis, and premature coronary artery disease. We previously mapped the STSL locus to human chromosome 2p21 (ref. 4) and further localized it to a region of less than 2 cM bounded by markers D2S2294 and D2S2291 (M.-H.L. et al., manuscript submitted). We now report that a new member of the ABC transporter family, ABCG5, is mutant in nine unrelated sitosterolemia patients.


Current Opinion in Lipidology | 2001

Genetic basis of sitosterolemia.

Mi-Hye Lee; Kangmo Lu; Shailesh Patel

The molecular mechanisms regulating the amount of dietary cholesterol retained by the body, as well as the bodys ability to exclude other dietary sterols selectively, are poorly understood. An average Western diet will contain approximately 250-500 mg of dietary cholesterol and approximately 200-400 mg of non-cholesterol sterols, of which plant sterols are the major constituents. Approximately 50-60% of dietary cholesterol is absorbed and retained by the normal human body, but less than 1% of the non-cholesterol sterols are retained. There thus exists a subtle mechanism that allows the body to distinguish between cholesterol and non-cholesterol sterols. In sitosterolemia, a rare autosomal recessive disorder, affected individuals hyperabsorb and retain not only cholesterol but also all other sterols, including plant and shellfish sterols from the intestine. Consequently, patients with this disease have very high levels of plant sterols in the plasma, and develop tendon and tuberous xanthomas, accelerated atherosclerosis, and premature coronary artery disease. The STSL locus has been mapped to human chromosome 2p21. Mutations in two tandem ABC genes, ABCG5 and ABCG8, encoding sterolin-1 and -2, respectively, are now known to be mutant in sitosterolemia. The identification of these genes should now lead to a better understanding of the molecular mechanism(s) governing the highly selective absorption and retention of cholesterol by the body. Indeed, it is the very existence of this disease that has given credence to the hypothesis that there is a molecular pathway that regulates dietary cholesterol absorption and sterol excretion by the body.


Journal of Clinical Investigation | 1998

Mapping a gene involved in regulating dietary cholesterol absorption. The sitosterolemia locus is found at chromosome 2p21.

Shailendra B. Patel; Gerald Salen; Hideki Hidaka; Peter O. Kwiterovich; Anton F. H. Stalenhoef; Tatu A. Miettinen; Scott M. Grundy; Mi-Hye Lee; Jeffrey Rubenstein; Mihael H. Polymeropoulos; Michael J. Brownstein

The molecular mechanisms regulating the amount of dietary cholesterol retained in the body as well as the bodys ability to selectively exclude other dietary sterols are poorly understood. Studies of the rare autosomal recessively inherited disease sitosterolemia (OMIM 210250) may shed some light on these processes. Patients suffering from this disease appear to hyperabsorb both cholesterol and plant sterols from the intestine. Additionally, there is failure of the livers ability to preferentially and rapidly excrete these non-cholesterol sterols into bile. Consequently, people who suffer from this disease have very elevated plasma plant sterol levels and develop tendon and tuberous xanthomas, accelerated atherosclerosis, and premature coronary artery disease. Identification of this gene defect may therefore throw light on regulation of net dietary cholesterol absorption and lead to an advancement in the management of this important cardiovascular risk factor. By studying 10 well-characterized families with this disorder, we have localized the genetic defect to chromosome 2p21, between microsatellite markers D2S1788 and D2S1352 (maximum lodscore 4.49, theta = 0.0).


BMC Medicine | 2004

A mouse model of sitosterolemia: absence of Abcg8/sterolin-2 results in failure to secrete biliary cholesterol

Eric L. Klett; Kangmo Lu; Astrid Kosters; Edwin Vink; Mi-Hye Lee; Michael K. Altenburg; Sarah Shefer; Ashok K. Batta; Hongwei Yu; Jianliang Chen; Richard L. Klein; Norbert Looije; Ronald P. J. Oude-Elferink; Albert K. Groen; Nobuyo Maeda; Gerald Salen; Shailendra B. Patel

BackgroundMutations in either of two genes comprising the STSL locus, ATP-binding cassette (ABC)-transporters ABCG5 (encoding sterolin-1) and ABCG8 (encoding sterolin-2), result in sitosterolemia, a rare autosomal recessive disorder of sterol trafficking characterized by increased plasma plant sterol levels. Based upon the genetics of sitosterolemia, ABCG5/sterolin-1 and ABCG8/sterolin-2 are hypothesized to function as obligate heterodimers. No phenotypic difference has yet been described in humans with complete defects in either ABCG5 or ABCG8. These proteins, based upon the defects in humans, are responsible for regulating dietary sterol entry and biliary sterol secretion.MethodsIn order to mimic the human disease, we created, by a targeted disruption, a mouse model of sitosterolemia resulting in Abcg8/sterolin-2 deficiency alone. Homozygous knockout mice are viable and exhibit sitosterolemia.ResultsMice deficient in Abcg8 have significantly increased plasma and tissue plant sterol levels (sitosterol and campesterol) consistent with sitosterolemia. Interestingly, Abcg5/sterolin-1 was expressed in both liver and intestine in Abcg8/sterolin-2 deficient mice and continued to show an apical expression. Remarkably, Abcg8 deficient mice had an impaired ability to secrete cholesterol into bile, but still maintained the ability to secrete sitosterol. We also report an intermediate phenotype in the heterozygous Abcg8+/- mice that are not sitosterolemic, but have a decreased level of biliary sterol secretion relative to wild-type mice.ConclusionThese data indicate that Abcg8/sterolin-2 is necessary for biliary sterol secretion and that loss of Abcg8/sterolin-2 has a more profound effect upon biliary cholesterol secretion than sitosterol. Since biliary sitosterol secretion is preserved, although not elevated in the sitosterolemic mice, this observation suggests that mechanisms other than by Abcg8/sterolin-2 may be responsible for its secretion into bile.


Trends in Endocrinology and Metabolism | 2001

Dietary cholesterol absorption; more than just bile

Kangmo Lu; Mi-Hye Lee; Shailendra B. Patel

Absorption of dietary cholesterol from the intestine is an important part of cholesterol homeostasis and represents the first step that allows dietary cholesterol to exert its metabolic effects. Although the role of bile salts in the initial absorption of dietary cholesterol, by the formation of emulsions, is readily appreciated, the recognition that other molecular mechanisms might govern this process is only recently gaining momentum. Not only does the intestine regulate the amount of dietary cholesterol that enters the body; it is very selective with regard to the sterols that are allowed in. The human intestine is responsible for absorbing a significant amount of cholesterol each day. In addition to approximately 0.5 g d(-1) of dietary cholesterol, many other sterols are also present in almost equal abundance in the normal diet. Approximately 0.4 g of plant sterols, such as sitosterol, brassicasterol and avanesterol, are also present. However, the human body seems to allow only cholesterol to enter and remain in the body, with almost negligible amounts of plant sterols being retained. That specific molecular mechanisms are responsible for this behavior is supported by the identification of the genetic defect(s) in a rare disorder, beta-sitosterolemia (MIM 210250), where this process is disrupted. Such studies are now beginning to throw light on sterol absorption and excretion and elucidate the molecular mechanisms that govern these processes.


Biochemistry | 2008

The adiponectin receptors AdipoR1 and AdipoR2 activate ERK1/2 through a Src/Ras-dependent pathway and stimulate cell growth †

Mi-Hye Lee; Richard L. Klein; Hesham M. El-Shewy; Deirdre K. Luttrell; Louis M. Luttrell

Adiponectin is an adipocyte-derived cytokine that has attracted much attention because of its insulin-sensitizing effects in liver and skeletal muscle. Two adiponectin receptors, AdipoR1/R2, have been cloned, but relatively little is known about their intracellular signaling mechanisms. We found that full-length adiponectin rapidly and robustly activates the ERK1/2 mitogen-activated protein kinase pathway in primary vascular smooth muscle, vascular endothelial cells, and hepatocytes. In a HEK293 cell model, we found that downregulating AdipoR1/R2 simultaneously, but not individually, by RNA interference attenuated adiponectin-induced ERK1/2 activation, suggesting that either receptor was sufficient to mediate the response. Downregulation of T-cadherin, another adiponectin binding protein, enhanced the response. Downregulation of APPL1, an adapter protein and putative mediator of AdipoR1/R2 signaling, impaired adiponectin-stimulated ERK1/2 activation. Inhibiting PKA modestly attenuated ERK1/2 activation, while inhibition of Src family tyrosine kinases with PP2 abolished the response. The small GTPase inhibitor Clostridium difficile toxin B also produced complete inhibition. Adiponectin caused rapid, PP2-sensitive activation of Ras, but not the cAMP-regulated small GTPase, Rap1, suggesting that Src-dependent Ras activation is the dominant mechanism of adiponectin-stimulated ERK1/2 activation. To test whether Ras-ERK1/2 signaling by adiponectin was physiologically relevant, we determined the effects of overexpressing AdipoR1, adiponectin, or both on the rate of HEK293 cell growth. Overexpression of adiponectin alone, but not AdipoR1 alone, supported growth under serum-free conditions, while simultaneous expression of both led to further enhancement. These results suggest that adiponectin can exert proliferative effects by activating Ras signaling pathways.


Journal of Biological Chemistry | 2006

Insulin-like Growth Factors Mediate Heterotrimeric G Protein-dependent ERK1/2 Activation by Transactivating Sphingosine 1-Phosphate Receptors

Hesham M. El-Shewy; Korey R. Johnson; Mi-Hye Lee; Ayad A. Jaffa; Lina M. Obeid; Louis M. Luttrell

Although several studies have shown that a subset of insulin-like growth factor (IGF) signals require the activation of heterotrimeric G proteins, the molecular mechanisms underlying IGF-stimulated G protein signaling remain poorly understood. Here, we have studied the mechanism by which endogenous IGF receptors activate the ERK1/2 mitogen-activated protein kinase cascade in HEK293 cells. In these cells, treatment with pertussis toxin and expression of a Gαq/11-(305–359) peptide that inhibits Gq/11 signaling additively inhibited IGF-stimulated ERK1/2 activation, indicating that the signal was almost completely G protein-dependent. Treatment with IGF-1 or IGF-2 promoted translocation of green fluorescent protein (GFP)-tagged sphingosine kinase (SK) 1 from the cytosol to the plasma membrane, increased endogenous SK activity within 30 s of stimulation, and caused a statistically significant increase in intracellular and extracellular sphingosine 1-phosphate (S1P) concentration. Using a GFP-tagged S1P1 receptor as a biological sensor for the generation of physiologically relevant S1P levels, we found that IGF-1 and IGF-2 induced GFP-S1P receptor internalization and that the effect was blocked by pretreatment with the SK inhibitor, dimethylsphingosine. Treating cells with dimethylsphingosine, silencing SK1 expression by RNA interference, and blocking endogenous S1P receptors with the competitive antagonist VPC23019 all significantly inhibited IGF-stimulated ERK1/2 activation, suggesting that IGFs elicit G protein-dependent ERK1/2 activation by stimulating SK1-dependent transactivation of S1P receptors. Given the ubiquity of SK and S1P receptor expression, S1P receptor transactivation may represent a general mechanism for G protein-dependent signaling by non-G protein-coupled receptors.


Nature | 2016

The conformational signature of β-arrestin2 predicts its trafficking and signalling functions

Mi-Hye Lee; Kathryn M. Appleton; Erik G. Strungs; Joshua Y. Kwon; Thomas A. Morinelli; Yuri K. Peterson; Stéphane A. Laporte; Louis M. Luttrell

Arrestins are cytosolic proteins that regulate G-protein-coupled receptor (GPCR) desensitization, internalization, trafficking and signalling. Arrestin recruitment uncouples GPCRs from heterotrimeric G proteins, and targets the proteins for internalization via clathrin-coated pits. Arrestins also function as ligand-regulated scaffolds that recruit multiple non-G-protein effectors into GPCR-based ‘signalsomes’. Although the dominant function(s) of arrestins vary between receptors, the mechanism whereby different GPCRs specify these divergent functions is unclear. Using a panel of intramolecular fluorescein arsenical hairpin (FlAsH) bioluminescence resonance energy transfer (BRET) reporters to monitor conformational changes in β-arrestin2, here we show that GPCRs impose distinctive arrestin ‘conformational signatures’ that reflect the stability of the receptor–arrestin complex and role of β-arrestin2 in activating or dampening downstream signalling events. The predictive value of these signatures extends to structurally distinct ligands activating the same GPCR, such that the innate properties of the ligand are reflected as changes in β-arrestin2 conformation. Our findings demonstrate that information about ligand–receptor conformation is encoded within the population average β-arrestin2 conformation, and provide insight into how different GPCRs can use a common effector for different purposes. This approach may have application in the characterization and development of functionally selective GPCR ligands and in identifying factors that dictate arrestin conformation and function.


Journal of Biological Chemistry | 2008

Role of β-Arrestin-mediated Desensitization and Signaling in the Control of Angiotensin AT1a Receptor-stimulated Transcription

Mi-Hye Lee; Hesham M. El-Shewy; Deirdre K. Luttrell; Louis M. Luttrell

Heptahelical G protein-coupled receptors employ several mechanisms to activate the ERK1/2 cascade and control gene transcription. Previous work with the angiotensin AT1a receptor has shown that Gq/11 activation leads to a rapid and transient rise in ERK1/2 activity, whereas β-arrestin binding supports sustained ERK1/2 activation by scaffolding a Raf·MEK·ERK complex associated with the internalized receptor. In this study, we compared the role of the two β-arrestin isoforms in AT1a receptor desensitization, ERK1/2 activation and transcription using selective RNA interference. In HEK293 cells, both the native AT1a receptor and a G protein-coupling deficient DRY/AAY mutant recruited β-arrestin1 and β-arrestin2 upon angiotensin binding and internalized with the receptor. In contrast, only β-arrestin2 supported protein kinase C-independent ERK1/2 activation by both the AT1a and DRY/AAY receptors. Using focused gene expression filter arrays to screen for endogenous transcriptional responses, we found that silencing β-arrestin1 or β-arrestin2 individually did not alter the response pattern but that silencing both caused a marked increase in the number of transcripts that were significantly up-regulated in response to AT1a receptor activation. The DRY/AAY receptor failed to elicit any detectable transcriptional response despite its ability to stimulate β-arrestin2-dependent ERK1/2 activation. These results indicate that the transcriptional response to AT1a receptor activation primarily reflects heterotrimeric G protein activation. Although β-arrestin1 and β-arrestin2 are functionally specialized with respect to supporting G protein-independent ERK1/2 activation, their common effect is to dampen the transcriptional response by promoting receptor desensitization.


Journal of Biological Chemistry | 2011

The β-Arrestin Pathway-selective Type 1A Angiotensin Receptor (AT1A) Agonist [Sar1,Ile4,Ile8]Angiotensin II Regulates a Robust G Protein-independent Signaling Network

Ryan T. Kendall; Erik G. Strungs; Saleh M. Rachidi; Mi-Hye Lee; Hesham M. El-Shewy; Deirdre K. Luttrell; Michael G. Janech; Louis M. Luttrell

The angiotensin II peptide analog [Sar1,Ile4,Ile8]AngII (SII) is a biased AT1A receptor agonist that stimulates receptor phosphorylation, β-arrestin recruitment, receptor internalization, and β-arrestin-dependent ERK1/2 activation without activating heterotrimeric G-proteins. To determine the scope of G-protein-independent AT1A receptor signaling, we performed a gel-based phosphoproteomic analysis of AngII and SII-induced signaling in HEK cells stably expressing AT1A receptors. A total of 34 differentially phosphorylated proteins were detected, of which 16 were unique to SII and eight to AngII stimulation. MALDI-TOF/TOF mass fingerprinting was employed to identify 24 SII-sensitive phosphoprotein spots, of which three (two peptide inhibitors of protein phosphatase 2A (I1PP2A and I2PP2A) and prostaglandin E synthase 3 (PGES3)) were selected for validation and further study. We found that phosphorylation of I2PP2A was associated with rapid and transient inhibition of a β-arrestin 2-associated pool of protein phosphatase 2A, leading to activation of Akt and increased phosphorylation of glycogen synthase kinase 3β in an arrestin signalsome complex. SII-stimulated PGES3 phosphorylation coincided with an increase in β-arrestin 1-associated PGES3 and an arrestin-dependent increase in cyclooxygenase 1-dependent prostaglandin E2 synthesis. These findings suggest that AT1A receptors regulate a robust G protein-independent signaling network that affects protein phosphorylation and autocrine/paracrine prostaglandin production and that these pathways can be selectively modulated by biased ligands that antagonize G protein activation.

Collaboration


Dive into the Mi-Hye Lee's collaboration.

Top Co-Authors

Avatar

Louis M. Luttrell

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Hesham M. El-Shewy

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Shailendra B. Patel

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Gerald Salen

United States Department of Veterans Affairs

View shared research outputs
Top Co-Authors

Avatar

Thomas A. Morinelli

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Deirdre K. Luttrell

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Richard L. Klein

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Hongwei Yu

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Kangmo Lu

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Kathryn M. Appleton

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge