Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louis M. Mansky is active.

Publication


Featured researches published by Louis M. Mansky.


Journal of Virology | 2010

Viral Mutation Rates

Rafael Sanjuán; Miguel Nebot; Nicola Chirico; Louis M. Mansky; Robert Belshaw

ABSTRACT Accurate estimates of virus mutation rates are important to understand the evolution of the viruses and to combat them. However, methods of estimation are varied and often complex. Here, we critically review over 40 original studies and establish criteria to facilitate comparative analyses. The mutation rates of 23 viruses are presented as substitutions per nucleotide per cell infection (s/n/c) and corrected for selection bias where necessary, using a new statistical method. The resulting rates range from 10−8 to10−6 s/n/c for DNA viruses and from 10−6 to 10−4 s/n/c for RNA viruses. Similar to what has been shown previously for DNA viruses, there appears to be a negative correlation between mutation rate and genome size among RNA viruses, but this result requires further experimental testing. Contrary to some suggestions, the mutation rate of retroviruses is not lower than that of other RNA viruses. We also show that nucleotide substitutions are on average four times more common than insertions/deletions (indels). Finally, we provide estimates of the mutation rate per nucleotide per strand copying, which tends to be lower than that per cell infection because some viruses undergo several rounds of copying per cell, particularly double-stranded DNA viruses. A regularly updated virus mutation rate data set will be available at www.uv.es/rsanjuan/virmut .


Journal of Virology | 2007

Human Immunodeficiency Virus Type 1 cDNAs Produced in the Presence of APOBEC3G Exhibit Defects in Plus-Strand DNA Transfer and Integration

Jean L. Mbisa; Rebekah Barr; James A. Thomas; Nick Vandegraaff; Irene J. Dorweiler; Evguenia S. Svarovskaia; William L. Brown; Louis M. Mansky; Robert J. Gorelick; Reuben S. Harris; Alan Engelman; Vinay K. Pathak

ABSTRACT Encapsidation of host restriction factor APOBEC3G (A3G) into vif-deficient human immunodeficiency virus type 1 (HIV-1) blocks virus replication at least partly by C-to-U deamination of viral minus-strand DNA, resulting in G-to-A hypermutation. A3G may also inhibit HIV-1 replication by reducing viral DNA synthesis and inducing viral DNA degradation. To gain further insight into the mechanisms of viral inhibition, we examined the metabolism of A3G-exposed viral DNA. We observed that an overall 35-fold decrease in viral infectivity was accompanied by a five- to sevenfold reduction in viral DNA synthesis. Wild-type A3G induced an additional fivefold decrease in the amount of viral DNA that was integrated into the host cell genome and similarly reduced the efficiency with which HIV-1 preintegration complexes (PICs) integrated into a target DNA in vitro. The A3G C-terminal catalytic domain was required for both of these antiviral activities. Southern blotting analysis of PICs showed that A3G reduced the efficiency and specificity of primer tRNA processing and removal, resulting in viral DNA ends that are inefficient substrates for integration and plus-strand DNA transfer. However, the decrease in plus-strand DNA transfer did not account for all of the observed decrease in viral DNA synthesis associated with A3G. These novel observations suggest that HIV-1 cDNA produced in the presence of A3G exhibits defects in primer tRNA processing, plus-strand DNA transfer, and integration.


Journal of Virology | 2000

The Interaction of Vpr with Uracil DNA Glycosylase Modulates the Human Immunodeficiency Virus Type 1 In Vivo Mutation Rate

Louis M. Mansky; Sandra Preveral; Luc Selig; Richard Benarous; Serge Benichou

ABSTRACT The Vpr protein of human immunodeficiency virus type 1 (HIV-1) influences the in vivo mutation rate of the virus. Since Vpr interacts with a cellular protein implicated in the DNA repair process, uracil DNA glycosylase (UNG), we have explored the contribution of this interaction to the mutation rate of HIV-1. Single-amino-acid variants of Vpr were characterized for their differential UNG-binding properties and used to trans complement vpr null mutant HIV-1. A striking correlation was established between the abilities of Vpr to interact with UNG and to influence the HIV-1 mutation rate. We demonstrate that Vpr incorporation into virus particles is required to influence the in vivo mutation rate and to mediate virion packaging of the nuclear form of UNG. The recruitment of UNG into virions indicates a mechanism for how Vpr can influence reverse transcription accuracy. Our data suggest that distinct mechanisms evolved in primate and nonprimate lentiviruses to reconcile uracil misincorporation into lentiviral DNA.


Journal of Virology | 2010

APOBEC3G Contributes to HIV-1 Variation through Sublethal Mutagenesis

Holly A. Sadler; Mark D. Stenglein; Reuben S. Harris; Louis M. Mansky

ABSTRACT The mammalian APOBEC3 proteins are an important component of the cellular innate immune response to retroviral infection. APOBEC3G can extinguish HIV-1 infectivity by its incorporation into virus particles and subsequent cytosine deaminase activity that attacks the nascent viral cDNA during reverse transcription, causing lethal mutagenesis. It has been suggested, but not formally shown, that APOBEC3G can also induce sublethal mutagenesis, which would maintain virus infectivity and contribute to HIV-1 variation. To test this, we developed a novel model system utilizing an HIV-1 vector and a panel of APOBEC3G-expressing cells. We observed proviruses with single APOBEC3G-mediated mutations (in the presence or absence of Vif), occurring at distinct hot spots and which could be rescued and shown to have infectivity. These data indicate that APOBEC3G-dependent restriction of HIV-1 can result in viable viral progeny that harbor sublethal levels of G-to-A mutations. Such mutations have the potential to contribute significantly to HIV-1 evolution, pathogenesis, immune escape, and drug resistance.


Journal of General Virology | 2002

Roles of uracil-DNA glycosylase and dUTPase in virus replication

Renxiang Chen; Huating Wang; Louis M. Mansky

Herpesviruses and poxviruses are known to encode the DNA repair enzyme uracil-DNA glycosylase (UNG), an enzyme involved in the base excision repair pathway that specifically removes the RNA base uracil from DNA, while at least one retrovirus (human immunodeficiency virus type 1) packages cellular UNG into virus particles. In these instances, UNG is implicated as being important in virus replication. However, a clear understanding of the role(s) of UNG in virus replication remains elusive. Herpesviruses, poxviruses and some retroviruses encode dUTPase, an enzyme that can minimize the misincorporation of uracil into DNA. The encoding of dUTPase by these viruses also implies their importance in virus replication. An understanding at the molecular level of how these viruses replicate in non-dividing cells should provide clues to the biological relevance of UNG and dUTPase function in virus replication.


Journal of Biological Chemistry | 2004

Vpr-mediated Incorporation of UNG2 into HIV-1 Particles Is Required to Modulate the Virus Mutation Rate and for Replication in Macrophages

Renxiang Chen; Erwann Le Rouzic; Jessica A. Kearney; Louis M. Mansky; Serge Benichou

Human immunodeficiency virus type 1 is able to infect nondividing cells, such as macrophages, and the viral Vpr protein has been shown to participate in this process. Here, we investigated the impact of the recruitment into virus particles of the nuclear form of uracil DNA glycosylase (UNG2), a cellular DNA repair enzyme, on the virus mutation rate and on replication in macrophages. We demonstrate that the interaction of Vpr with UNG2 led to virion incorporation of a catalytically active enzyme that is directly involved with Vpr in modulating the virus mutation rate. The lack of UNG in virions during virus replication in primary monocyte-derived macrophages further exacerbated virus mutant frequencies to an 18-fold increase compared with the 4-fold increase measured in actively dividing cells. Because the presence of UNG is also critical for efficient infection of macrophages, these observations extend the role of Vpr to another early step of the virus life cycle, e.g. viral DNA synthesis, that is essential for replication of human immunodeficiency virus type 1 in nondividing cells.


Journal of General Virology | 1998

Retrovirus mutation rates and their role in genetic variation

Louis M. Mansky

IP: 54.70.40.11 On: Sun, 30 Dec 2018 04:34:09 Journal of General Virology (1998), 79, 1337–1345. Printed in Great Britain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


Journal of Virology | 2000

3'-Azido-3'-deoxythymidine (AZT) and AZT-resistant reverse transcriptase can increase the in vivo mutation rate of human immunodeficiency virus type 1

Louis M. Mansky; Lisa C. Bernard

ABSTRACT How antiretroviral drug resistance influences human immunodeficiency virus type 1 (HIV-1) evolution is not clear. This study tested the hypothesis that antiretroviral drugs such as 3′-azido-3′-deoxythymidine (AZT) can influence the in vivo mutation rate of HIV-1. It was observed that AZT can increase the rate of HIV-1 mutation by a factor of 7 in a single round of replication. In addition, (−)2′,3′-dideoxy-3′-thiacytidine (3TC) was also found to increase the mutation rate of HIV-1 by a factor of 3. It was also found that HIV-1 drug-resistant reverse transcriptase (RT) variants can influence the in vivo mutation rate. Replication of HIV-1 with AZT-resistant RTs increased the mutation rate by as much as a factor of 3, while replication of HIV-1 with a 3TC-resistant RT (M184V) had no significant effect on the mutation rate. It was observed that only high-level, AZT-resistant RT variants could influence the in vivo mutation rate (i.e., M41L/T215Y and M41L/D67N/K70R/T215Y). In total, these observations indicate that both antiretroviral drugs and drug resistance mutations can influence the in vivo mutation rate of HIV-1.


Journal of Virology | 2009

5-Azacytidine Can Induce Lethal Mutagenesis in Human Immunodeficiency Virus Type 1

Michael J. Dapp; Christine L. Clouser; Steven E. Patterson; Louis M. Mansky

ABSTRACT Ribonucleosides inhibit human immunodeficiency virus type 1 (HIV-1) replication by mechanisms that have not been fully elucidated. Here, we report the antiviral mechanism for the ribonucleoside analog 5-azacytidine (5-AZC). We hypothesized that the anti-HIV-1 activity of 5-AZC was due to an increase in the HIV-1 mutation rate following its incorporation into viral RNA during transcription. However, we demonstrate that 5-AZCs primary antiviral activity can be attributed to its effect on the early phase of HIV-1 replication. Furthermore, the antiviral activity was associated with an increase in the frequency of viral mutants, suggesting that 5-AZCs primary target is reverse transcription. Sequencing analysis showed an enrichment in G-to-C transversion mutations and further supports the idea that reverse transcription is an antiviral target of 5-AZC. These results indicate that 5-AZC is incorporated into viral DNA following reduction to 5-aza-2′-deoxycytidine. Incorporation into the viral DNA leads to an increase in mutant frequency that is consistent with lethal mutagenesis during reverse transcription as the primary antiviral mechanism of 5-AZC. Antiviral activity and increased mutation frequency were also associated with the late phase of HIV-1 replication; however, 5-AZCs effect on the late phase was less robust. These results reveal that the primary antiviral mechanism of 5-AZC can be attributed to its ability to increase the HIV-1 mutation frequency through viral-DNA incorporation during reverse transcription. Our observations indicate that 5-AZC can affect two steps in HIV-1 replication (i.e., transcription and reverse transcription) but that its primary antiviral activity is due to incorporation during reverse transcription.


Journal of Virology | 2003

Influence of Reverse Transcriptase Variants, Drugs, and Vpr on Human Immunodeficiency Virus Type 1 Mutant Frequencies

Louis M. Mansky; Erwann Le Rouzic; Serge Benichou; Lisa C. Gajary

ABSTRACT The evolution of drug resistance is a major complication of human immunodeficiency virus type 1 (HIV-1) chemotherapy. HIV-1 reverse transcriptase (RT) is a major target of antiretroviral therapy and ultimately the target of drug resistance mutations. Previous studies have indicated that drug-resistant HIV-1 RTs can alter HIV-1 mutant frequencies. In this study, we have tested a panel of HIV-1 RT variants for their ability to influence virus mutant frequencies. The RT variants tested included drug-resistant RT variants as well as other variants analyzed in enzyme fidelity studies with the lacZα gene as a mutation target and/or implicated as being important for enzyme fidelity by structural studies. Combinations of mutations that alone had a statistically significant influence on virus mutant frequencies resulted in different mutant frequency phenotypes. Furthermore, when virus replication occurred in the presence of drugs [e.g., 3′-azido-3′-deoxythymidine, (−)2/,3′-dideoxy-3′-thiacytidine, hydroxyurea, thymidine, or thioguanine] with selected RT variants, virus mutant frequencies increased. Similarly, Vpr variants deficient for binding to the uracil DNA glycosylase repair enzyme were observed to influence HIV-1 virus mutant frequencies when tested alone or in combination with RT variants. In summary, these observations indicate that HIV-1 mutant frequencies can significantly change by single amino acid substitutions in RT and that these effects can be altered by additional mutations in RT, by drugs, and/or by expression of Vpr variants. Such altered virus mutant frequencies could impact HIV-1 dynamics and evolution in small population sizes.

Collaboration


Dive into the Louis M. Mansky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Zhang

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Yan Chen

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

J. Maldonado

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge