Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan M.O. Rawson is active.

Publication


Featured researches published by Jonathan M.O. Rawson.


Retrovirology | 2010

Biophysical analysis of HTLV-1 particles reveals novel insights into particle morphology and Gag stoichiometry

Iwen F. Grigsby; Wei Zhang; Jolene Johnson; Keir H. Fogarty; Yan Chen; Jonathan M.O. Rawson; Aaron J Crosby; Joachim D. Mueller; Louis M. Mansky

BackgroundHuman T-lymphotropic virus type 1 (HTLV-1) is an important human retrovirus that is a cause of adult T-cell leukemia/lymphoma. While an important human pathogen, the details regarding virus replication cycle, including the nature of HTLV-1 particles, remain largely unknown due to the difficulties in propagating the virus in tissue culture. In this study, we created a codon-optimized HTLV-1 Gag fused to an EYFP reporter as a model system to quantitatively analyze HTLV-1 particles released from producer cells.ResultsThe codon-optimized Gag led to a dramatic and highly robust level of Gag expression as well as virus-like particle (VLP) production. The robust level of particle production overcomes previous technical difficulties with authentic particles and allowed for detailed analysis of particle architecture using two novel methodologies. We quantitatively measured the diameter and morphology of HTLV-1 VLPs in their native, hydrated state using cryo-transmission electron microscopy (cryo-TEM). Furthermore, we were able to determine HTLV-1 Gag stoichiometry as well as particle size with the novel biophysical technique of fluorescence fluctuation spectroscopy (FFS). The average HTLV-1 particle diameter determined by cryo-TEM and FFS was 71 ± 20 nm and 75 ± 4 nm, respectively. These values are significantly smaller than previous estimates made of HTLV-1 particles by negative staining TEM. Furthermore, cryo-TEM reveals that the majority of HTLV-1 VLPs lacks an ordered structure of the Gag lattice, suggesting that the HTLV-1 Gag shell is very likely to be organized differently compared to that observed with HIV-1 Gag in immature particles. This conclusion is supported by our observation that the average copy number of HTLV-1 Gag per particle is estimated to be 510 based on FFS, which is significantly lower than that found for HIV-1 immature virions.ConclusionsIn summary, our studies represent the first quantitative biophysical analysis of HTLV-1-like particles and reveal novel insights into particle morphology and Gag stochiometry.


Biophysical Journal | 2011

Characterization of Cytoplasmic Gag-Gag Interactions by Dual-Color Z-Scan Fluorescence Fluctuation Spectroscopy

Keir H. Fogarty; Yan Chen; Iwen F. Grigsby; Patrick J. Macdonald; Elizabeth M. Smith; Jolene Johnson; Jonathan M.O. Rawson; Louis M. Mansky; Joachim D. Mueller

Fluorescence fluctuation spectroscopy (FFS) quantifies the interactions of fluorescently-labeled proteins inside living cells by brightness analysis. However, the study of cytoplasmic proteins that interact with the plasma membrane is challenging with FFS. If the cytoplasmic section is thinner than the axial size of the observation volume, cytoplasmic and membrane-bound proteins are coexcited, which leads to brightness artifacts. This brightness bias, if not recognized, leads to erroneous interpretation of the data. We have overcome this challenge by introducing dual-color z-scan FFS and the addition of a distinctly colored reference protein. Here, we apply this technique to study the cytoplasmic interactions of the Gag proteins from human immunodeficiency virus type 1 (HIV-1) and human T-lymphotropic virus type 1 (HTLV-1). The Gag protein plays a crucial role in the assembly of retroviruses and is found in both membrane and cytoplasm. Dual-color z-scans demonstrate that brightness artifacts are caused by a dim nonpunctate membrane-bound fraction of Gag. We perform an unbiased brightness characterization of cytoplasmic Gag by avoiding the membrane-bound fraction and reveal previously unknown differences in the behavior of the two retroviral Gag species. HIV-1 Gag exhibits concentration-dependent oligomerization in the cytoplasm, whereas HTLV-1 Gag lacks significant cytoplasmic Gag-Gag interactions.


Journal of General Virology | 2014

Novel inhibitors of human immunodeficiency virus type 2 infectivity.

Lauren B. Beach; Jonathan M.O. Rawson; Baek Kim; Steven E. Patterson; Louis M. Mansky

Human immunodeficiency virus type 2 (HIV-2) infects about two million people worldwide. HIV-2 has fewer treatment options than HIV-1, yet may evolve drug resistance more quickly. We have analysed several novel drugs for anti-HIV-2 activity. It was observed that 5-azacytidine, clofarabine, gemcitabine and resveratrol have potent anti-HIV-2 activity. The EC50 values for 5-azacytidine, clofarabine and resveratrol were found to be significantly lower with HIV-2 than with HIV-1. A time-of-addition assay was used to analyse the ability of these drugs to interfere with HIV-2 replication. Reverse transcription was the likely target for antiretroviral activity. Taken together, several novel drugs have been discovered to have activity against HIV-2. Based upon their known activities, these drugs may elicit enhanced HIV-2 mutagenesis and therefore be useful for inducing HIV-2 lethal mutagenesis. In addition, the data are consistent with HIV-2 reverse transcriptase being more sensitive than HIV-1 reverse transcriptase to dNTP pool alterations.


Retrovirology | 2015

HIV-1 and HIV-2 exhibit similar mutation frequencies and spectra in the absence of G-to-A hypermutation

Jonathan M.O. Rawson; Sean R. Landman; Cavan Reilly; Louis M. Mansky

BackgroundHuman immunodeficiency virus type 2 (HIV-2) is often distinguished clinically by lower viral loads, reduced transmissibility, and longer asymptomatic periods than for human immunodeficiency virus type 1 (HIV-1). Differences in the mutation frequencies of HIV-1 and HIV-2 have been hypothesized to contribute to the attenuated progression of HIV-2 observed clinically.ResultsTo address this hypothesis, we performed Illumina sequencing of multiple amplicons prepared from cells infected with HIV-1 or HIV-2, resulting in ~4.7 million read pairs and the identification of ~200,000 mutations after data processing. We observed that: (1) HIV-2 displayed significantly lower total mutation, substitution, and transition mutation frequencies than that of HIV-1, along with a mutation spectrum markedly less biased toward G-to-A transitions, (2) G-to-A hypermutation consistent with the activity of APOBEC3 proteins was observed for both HIV-1 and HIV-2 despite the presence of Vif, (3) G-to-A hypermutation was significantly higher for HIV-1 than for HIV-2, and (4) HIV-1 and HIV-2 total mutation frequencies were not significantly different in the absence of G-to-A hypermutants.ConclusionsTaken together, these data demonstrate that HIV-2 exhibits a distinct mutational spectrum and a lower mutation frequency relative to HIV-1. However, the observed differences were primarily due to reduced levels of G-to-A hypermutation for HIV-2. These findings suggest that HIV-2 may be less susceptible than HIV-1 to APOBEC3-mediated hypermutation, but that the fidelities of other mutational sources (such as reverse transcriptase) are relatively similar for HIV-1 and HIV-2. Overall, these data imply that differences in replication fidelity are likely not a major contributing factor to the unique clinical features of HIV-2 infection.


Antimicrobial Agents and Chemotherapy | 2015

Lack of mutational hot spots during decitabine-mediated HIV-1 mutagenesis

Jonathan M.O. Rawson; Sean R. Landman; Cavan Reilly; Laurent Bonnac; Steven E. Patterson; Louis M. Mansky

ABSTRACT Decitabine has previously been shown to induce lethal mutagenesis of human immunodeficiency virus type 1 (HIV-1). However, the factors that determine the susceptibilities of individual sequence positions in HIV-1 to decitabine have not yet been defined. To investigate this, we performed Illumina high-throughput sequencing of multiple amplicons prepared from proviral DNA that was recovered from decitabine-treated cells infected with HIV-1. We found that decitabine induced an ≈4.1-fold increase in the total mutation frequency of HIV-1, primarily due to a striking ≈155-fold increase in the G-to-C transversion frequency. Intriguingly, decitabine also led to an ≈29-fold increase in the C-to-G transversion frequency. G-to-C frequencies varied substantially (up to ≈80-fold) depending upon sequence position, but surprisingly, mutational hot spots (defined as upper outliers within the mutation frequency distribution) were not observed. We further found that every single guanine position examined was significantly susceptible to the mutagenic effects of decitabine. Taken together, these observations demonstrate for the first time that decitabine-mediated HIV-1 mutagenesis is promiscuous and occurs in the absence of a clear bias for mutational hot spots. These data imply that decitabine-mediated G-to-C mutagenesis is a highly effective antiviral mechanism for extinguishing HIV-1 infectivity.


Journal of Molecular Biology | 2017

Single-Strand Consensus Sequencing Reveals that HIV Type but not Subtype Significantly Impacts Viral Mutation Frequencies and Spectra

Jonathan M.O. Rawson; Daryl M. Gohl; Sean R. Landman; Megan E. Roth; Morgan E. Meissner; Tara S. Peterson; James S. Hodges; Kenneth B. Beckman; Louis M. Mansky

A long-standing question of human immunodeficiency virus (HIV) genetic variation and evolution has been whether differences exist in mutation rate and/or mutation spectra among HIV types (i.e., HIV-1 versus HIV-2) and among HIV groups (i.e., HIV-1 groups M-P and HIV-2 groups A-H) and HIV-1 Group M subtypes (i.e., subtypes A-D, F-H, and J-K). To address this, we developed a new single-strand consensus sequencing assay for the determination of HIV mutation frequencies and spectra using the Illumina sequencing platform. This assay enables parallel and standardized comparison of HIV mutagenesis among various viral vectors with lower background error than traditional methods of Illumina library preparation. We found significant differences in viral mutagenesis between HIV types but intriguingly no significant differences among HIV-1 Group M subtypes. More specifically, HIV-1 exhibited higher transition frequencies than HIV-2, due mostly to single G-to-A mutations and (to a lesser extent) G-to-A hypermutation. These data suggest that HIV-2 RT exhibits higher fidelity during viral replication, and taken together, these findings demonstrate that HIV type but not subtype significantly affects viral mutation frequencies and spectra. These differences may inform antiviral and vaccine strategies.


Methods of Molecular Biology | 2016

Rapid Determination of HIV-1 Mutant Frequencies and Mutation Spectra Using an mCherry/EGFP Dual-Reporter Viral Vector

Jonathan M.O. Rawson; Christine L. Clouser; Louis M. Mansky

The high mutation rate of human immunodeficiency virus type-1 (HIV-1) has been a pivotal factor in its evolutionary success as a human pathogen, driving the emergence of drug resistance, immune system escape, and invasion of distinct anatomical compartments. Extensive research has focused on understanding how various cellular and viral factors alter the rates and types of mutations produced during viral replication. Here, we describe a single-cycle dual-reporter vector assay that relies upon the detection of mutations that eliminate either expression of mCherry or enhanced green fluorescent protein (EGFP). The reporter-based method can be used to efficiently quantify changes in mutant frequencies and mutation spectra that arise due to a variety of factors, including viral mutagens, drug resistance mutations, cellular physiology, and APOBEC3 proteins.


Viruses | 2014

Retroviral Vectors for Analysis of Viral Mutagenesis and Recombination

Jonathan M.O. Rawson; Louis M. Mansky

Retrovirus population diversity within infected hosts is commonly high due in part to elevated rates of replication, mutation, and recombination. This high genetic diversity often complicates the development of effective diagnostics, vaccines, and antiviral drugs. This review highlights the diverse vectors and approaches that have been used to examine mutation and recombination in retroviruses. Retroviral vectors for these purposes can broadly be divided into two categories: those that utilize reporter genes as mutation or recombination targets and those that utilize viral genes as targets of mutation or recombination. Reporter gene vectors greatly facilitate the detection, quantification, and characterization of mutants and/or recombinants, but may not fully recapitulate the patterns of mutagenesis or recombination observed in native viral gene sequences. In contrast, the detection of mutations or recombination events directly in viral genes is more biologically relevant but also typically more challenging and inefficient. We will highlight the advantages and disadvantages of the various vectors and approaches used as well as propose ways in which they could be improved.


Retrovirology | 2011

Analysis of the HTLV-1 Gag assembly pathway by biophysical fluorescence

Keir H. Fogarty; Yan Chen; Iwen F. Grigsby; Patrick J. Macdonald; Elizabeth M. Smith; Jolene Johnson; Jonathan M.O. Rawson; Joachim D. Mueller; Louis M. Mansky

Much of the mechanistic details for how HTLV-1 Gag orchestrates virus particle assembly and release are poorly understood. Here, we monitored the behavior of both membrane-bound and cytoplasmic HTLV-1 Gag in real-time in living cells incubated on a fluorescence microscope. We used both fluorescence fluctuation spectroscopy (FFS, conventional and z-scan) and fluorescence imaging (epi-illumination, total internal reflection fluorescence (TIRF)) to investigate the relationship between cytoplasmic and membrane bound Gag, using a Gag-YFP model system. FFS determines the brightness, mobility, and concentration (conventional) and localization (z-scan) of fluorescent particles from the intensity bursts generated by individual particles passing through a small observation volume, which yields information about protein stoichiometry, interactions, transport, and distribution. By coupling the single-molecule FFS technique with imaging techniques capable of monitoring Gag localization (epi-illumination) and membrane-specific localization (TIRF), we achieved new insights into the earliest events in HTLV-1 Gag assembly, and differences to HIV-1 Gag. We found that HTLV-1 Gag membrane-targeting occurred at all cytoplasmic concentrations measured, while appreciable membrane-targeting for HIV-1 required Gag cytoplasmic concentration to exceed a threshold. In addition, z-scan FFS revealed that a substantial population of membrane-bound HTLV-1 Gag exists not as puncta, but as a diffuse, low-order, dynamic “sheet.” These observations, coupled with previous observations of cytoplasmic Gag interactions and mobility, point to differences in membrane targeting of HTLV-1 and HIV-1 Gag. In summary, the suite of biophysical fluorescence techniques, applied HTLV-1 Gag, provide unparalleled information concerning HTLV-1 Gag trafficking processes in vivo, elucidating assembly pathway differences between HTLV-1 and other retroviruses.


Antimicrobial Agents and Chemotherapy | 2016

5-Azacytidine Enhances the Mutagenesis of HIV-1 by Reduction to 5-Aza-2′-Deoxycytidine

Jonathan M.O. Rawson; Michele B. Daly; Jiashu Xie; Christine L. Clouser; Sean R. Landman; Cavan Reilly; Laurent Bonnac; Baek Kim; Steven E. Patterson; Louis M. Mansky

ABSTRACT 5-Azacytidine (5-aza-C) is a ribonucleoside analog that induces the lethal mutagenesis of human immunodeficiency virus type 1 (HIV-1) by causing predominantly G-to-C transversions during reverse transcription. 5-Aza-C could potentially act primarily as a ribonucleotide (5-aza-CTP) or as a deoxyribonucleotide (5-aza-2′-deoxycytidine triphosphate [5-aza-dCTP]) during reverse transcription. In order to determine the primary form of 5-aza-C that is active against HIV-1, Illumina sequencing was performed using proviral DNA from cells treated with 5-aza-C or 5-aza-dC. 5-Aza-C and 5-aza-dC were found to induce highly similar patterns of mutation in HIV-1 in terms of the types of mutations observed, the magnitudes of effects, and the distributions of mutations at individual sequence positions. Further, 5-aza-dCTP was detected by liquid chromatography–tandem mass spectrometry in cells treated with 5-aza-C, demonstrating that 5-aza-C was a substrate for ribonucleotide reductase. Notably, levels of 5-aza-dCTP were similar in cells treated with equivalent effective concentrations of 5-aza-C or 5-aza-dC. Lastly, HIV-1 reverse transcriptase was found to incorporate 5-aza-CTP in vitro at least 10,000-fold less efficiently than 5-aza-dCTP. Taken together, these data support the model that 5-aza-C enhances the mutagenesis of HIV-1 primarily after reduction to 5-aza-dC, which can then be incorporated during reverse transcription and lead to G-to-C hypermutation. These findings may have important implications for the design of new ribonucleoside analogs directed against retroviruses.

Collaboration


Dive into the Jonathan M.O. Rawson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan Chen

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cavan Reilly

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge