Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louis S. Santiago is active.

Publication


Featured researches published by Louis S. Santiago.


Oecologia | 2004

Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees.

Louis S. Santiago; Guillermo Goldstein; Frederick C. Meinzer; Jack B. Fisher; K. Machado; David R. Woodruff; Tappey H. Jones

We investigated how water transport capacity, wood density and wood anatomy were related to leaf photosynthetic traits in two lowland forests in Panama. Leaf-specific hydraulic conductivity (kL) of upper branches was positively correlated with maximum rates of net CO2 assimilation per unit leaf area (Aarea) and stomatal conductance (gs) across 20 species of canopy trees. Maximum kL showed stronger correlation with Aarea than initial kL suggesting that allocation to photosynthetic potential is proportional to maximum water transport capacity. Terminal branch kL was negatively correlated with Aarea/gs and positively correlated with photosynthesis per unit N, indicating a trade-off of efficient use of water against efficient use of N in photosynthesis as water transport efficiency varied. Specific hydraulic conductivity calculated from xylem anatomical characteristics (ktheoretical) was positively related to Aarea and kL, consistent with relationships among physiological measurements. Branch wood density was negatively correlated with wood water storage at saturation, kL, Aarea, net CO2 assimilation per unit leaf mass (Amass), and minimum leaf water potential measured on covered leaves, suggesting that wood density constrains physiological function to specific operating ranges. Kinetic and static indices of branch water transport capacity thus exhibit considerable co-ordination with allocation to potential carbon gain. Our results indicate that understanding tree hydraulic architecture provides added insights to comparisons of leaf level measurements among species, and links photosynthetic allocation patterns with branch hydraulic processes.


Ecology | 2011

Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest

S. Joseph Wright; Joseph B. Yavitt; Nina Wurzburger; Benjamin L. Turner; Edmund V. J. Tanner; Emma J. Sayer; Louis S. Santiago; Michael Kaspari; Lars O. Hedin; Kyle E. Harms; Milton N. Garcia; Marife D. Corre

We maintained a factorial nitrogen (N), phosphorus (P), and potassium (K) addition experiment for 11 years in a humid lowland forest growing on a relatively fertile soil in Panama to evaluate potential nutrient limitation of tree growth rates, fine-litter production, and fine-root biomass. We replicated the eight factorial treatments four times using 32 plots of 40 x 40 m each. The addition of K was associated with significant decreases in stand-level fine-root biomass and, in a companion study of seedlings, decreases in allocation to roots and increases in height growth rates. The addition of K and N together was associated with significant increases in growth rates of saplings and poles (1-10 cm in diameter at breast height) and a further marginally significant decrease in stand-level fine-root biomass. The addition of P was associated with a marginally significant (P = 0.058) increase in fine-litter production that was consistent across all litter fractions. Our experiment provides evidence that N, P, and K all limit forest plants growing on a relatively fertile soil in the lowland tropics, with the strongest evidence for limitation by K among seedlings, saplings, and poles.


Functional Plant Biology | 2009

Why are non-photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses

Lucas A. Cernusak; Guillaume Tcherkez; Claudia Keitel; William K. Cornwell; Louis S. Santiago; Alexander Knohl; Margaret M. Barbour; David G. Williams; Peter B. Reich; David S. Ellsworth; Todd E. Dawson; Howard Griffiths; Graham D. Farquhar; Ian J. Wright

Non-photosynthetic, or heterotrophic, tissues in C3 plants tend to be enriched in 13C compared with the leaves that supply them with photosynthate. This isotopic pattern has been observed for woody stems, roots, seeds and fruits, emerging leaves, and parasitic plants incapable of net CO2 fixation. Unlike in C3 plants, roots of herbaceous C4 plants are generally not 13C-enriched compared with leaves. We review six hypotheses aimed at explaining this isotopic pattern in C3 plants: (1) variation in biochemical composition of heterotrophic tissues compared with leaves; (2) seasonal separation of growth of leaves and heterotrophic tissues, with corresponding variation in photosynthetic discrimination against 13C; (3) differential use of day v. night sucrose between leaves and sink tissues, with day sucrose being relatively 13C-depleted and night sucrose 13C-enriched; (4) isotopic fractionation during dark respiration; (5) carbon fixation by PEP carboxylase; and (6) developmental variation in photosynthetic discrimination against 13C during leaf expansion. Although hypotheses (1) and (2) may contribute to the general pattern, they cannot explain all observations. Some evidence exists in support of hypotheses (3) through to (6), although for hypothesis (6) it is largely circumstantial. Hypothesis (3) provides a promising avenue for future research. Direct tests of these hypotheses should be carried out to provide insight into the mechanisms causing within-plant variation in carbon isotope composition.


Ecology Letters | 2011

Global patterns of leaf mechanical properties

Yusuke Onoda; Mark Westoby; Peter B. Adler; Amy M.F. Choong; Fiona J. Clissold; Johannes H. C. Cornelissen; Sandra Díaz; Nathaniel J. Dominy; Alison A. Elgart; Lucas Enrico; Paul V. A. Fine; Jerome J. Howard; Adel Jalili; Kaoru Kitajima; Hiroko Kurokawa; Clare McArthur; Peter W. Lucas; Lars Markesteijn; Natalia Pérez-Harguindeguy; Lourens Poorter; Lora A. Richards; Louis S. Santiago; Enio Sosinski; Sunshine A. Van Bael; David I. Warton; Ian J. Wright; S. Joseph Wright; Nayuta Yamashita

Leaf mechanical properties strongly influence leaf lifespan, plant-herbivore interactions, litter decomposition and nutrient cycling, but global patterns in their interspecific variation and underlying mechanisms remain poorly understood. We synthesize data across the three major measurement methods, permitting the first global analyses of leaf mechanics and associated traits, for 2819 species from 90 sites worldwide. Key measures of leaf mechanical resistance varied c. 500-800-fold among species. Contrary to a long-standing hypothesis, tropical leaves were not mechanically more resistant than temperate leaves. Leaf mechanical resistance was modestly related to rainfall and local light environment. By partitioning leaf mechanical resistance into three different components we discovered that toughness per density contributed a surprisingly large fraction to variation in mechanical resistance, larger than the fractions contributed by lamina thickness and tissue density. Higher toughness per density was associated with long leaf lifespan especially in forest understory. Seldom appreciated in the past, toughness per density is a key factor in leaf mechanical resistance, which itself influences plant-animal interactions and ecosystem functions across the globe.


Plant Cell and Environment | 2009

Fog interception by Sequoia sempervirens (D. Don) crowns decouples physiology from soil water deficit

Kevin A. Simonin; Louis S. Santiago; Todd E. Dawson

Although crown wetting events can increase plant water status, leaf wetting is thought to negatively affect plant carbon balance by depressing photosynthesis and growth. We investigated the influence of crown fog interception on the water and carbon relations of juvenile and mature Sequoia sempervirens trees. Field observations of mature trees indicated that fog interception increased leaf water potential above that of leaves sheltered from fog. Furthermore, observed increases in leaf water potential exceeded the maximum water potential predicted if soil water was the only available water source. Because field observations were limited to two mature trees, we conducted a greenhouse experiment to investigate how fog interception influences plant water status and photosynthesis. Pre-dawn and midday branchlet water potential, leaf gas exchange and chlorophyll fluorescence were measured on S. sempervirens saplings exposed to increasing soil water deficit, with and without overnight canopy fog interception. Sapling fog interception increased leaf water potential and photosynthesis above the control and soil water deficit treatments despite similar dark-acclimated leaf chlorophyll fluorescence. The field observations and greenhouse experiment show that fog interception represents an overlooked flux into the soil-plant-atmosphere continuum that temporarily, but significantly, decouples leaf-level water and carbon relations from soil water availability.


Ecology | 2007

EXTENDING THE LEAF ECONOMICS SPECTRUM TO DECOMPOSITION: EVIDENCE FROM A TROPICAL FOREST

Louis S. Santiago

I investigated the relationship between leaf physiological traits and decomposition of leaf litter for 35 plant species of contrasting growth forms from a lowland tropical forest in Panama to determine whether leaf traits could be used to predict decomposition. Decomposition rate (k) was correlated with specific leaf area (SLA), leaf nitrogen (N), phosphorus (P), and potassium (K) across all species. Photosynthetic rate per unit mass (Amass) was not correlated with k, but structural equation modeling showed support for a causal model with significant indirect effects of Amass on k through SLA, N, and P, but not K. The results indicate that the decomposability of leaf tissue in this tropical forest is related to a global spectrum of leaf economics that varies from thin, easily decomposable leaves with high nutrient concentrations and high photosynthetic rates to thick, relatively recalcitrant leaves with greater physical toughness and defenses and low photosynthetic rates. If this pattern is robust across biomes, then selection for suites of traits that maximize photosynthetic carbon gain over the lifetime of the leaf may be used to predict the effects of plant species on leaf litter decomposition, thus placing the ecosystem process of decomposition in an evolutionary context.


Plant Physiology | 2009

Crassulacean Acid Metabolism and Epiphytism Linked to Adaptive Radiations in the Orchidaceae

Katia Silvera; Louis S. Santiago; John C. Cushman; Klaus Winter

Species of the large family Orchidaceae display a spectacular array of adaptations and rapid speciations that are linked to several innovative features, including specialized pollination syndromes, colonization of epiphytic habitats, and the presence of Crassulacean acid metabolism (CAM), a water-conserving photosynthetic pathway. To better understand the role of CAM and epiphytism in the evolutionary expansion of tropical orchids, we sampled leaf carbon isotopic composition of 1,103 species native to Panama and Costa Rica, performed character state reconstruction and phylogenetic trait analysis of CAM and epiphytism, and related strong CAM, present in 10% of species surveyed, to climatic variables and the evolution of epiphytism in tropical regions. Altitude was the most important predictor of photosynthetic pathway when all environmental variables were taken into account, with CAM being most prevalent at low altitudes. By creating integrated orchid trees to reconstruct ancestral character states, we found that C3 photosynthesis is the ancestral state and that CAM has evolved at least 10 independent times with several reversals. A large CAM radiation event within the Epidendroideae, the most species-rich epiphytic clade of any known plant group, is linked to a Tertiary species radiation that originated 65 million years ago. Our study shows that parallel evolution of CAM is present among subfamilies of orchids, and correlated divergence between photosynthetic pathways and epiphytism can be explained by the prevalence of CAM in low-elevation epiphytes and rapid speciation of high-elevation epiphytes in the Neotropics, contributing to the astounding diversity in the Orchidaceae.


Journal of Tropical Ecology | 2005

Nutrient cycling and plant-soil feedbacks along a precipitation gradient in lowland Panama

Louis S. Santiago; Edward A. G. Schuur; Katia Silvera

This study addresses patterns of nutrient dynamics on a precipitation gradient (1800-3500 mm y −1 ) in lowland tropical forest with heterogeneous soil parent material, high plant species diversity and large changes in species composition. Mean foliar concentrations of phosphorus, potassium, calcium and magnesium decreased with increasing precipitation, whereas foliar carbon:nitrogen increased with increasing precipitation. Mean foliar nitrogen:phosphorus varied from 16.4-23.8 suggesting that plant productivity at these sites is limited by phosphorus. Total soil nitrogen increased as a function of foliar litter lignin:nitrogen, whereas net nitrogen mineralization rates decreased with increasing lignin:N indicating that as litter quality decreases, more soil nitrogen is held in soil organic matter and the mineralization of that nitrogen is slower. Extractable phosphorus in soil was negatively correlated with foliar litter lignin:phosphorus, illustrating effects of litter quality on soil phosphorus availability. Overall, the results suggest that variation in plant community composition along this precipitation gradient is tightly coupled with soil nutrient cycling. Much of our understanding of effects of precipitation on nutrient cycling in tropical forest is based on precipitation gradients across montane forest in Hawaii, where species composition and soil parent material are constant. Our results suggest that variation in parent material or species composition may confound predictions developed in model island systems. Resumen: Este estudio trata sobre los patrones de din´


Functional Plant Biology | 2005

Distribution of crassulacean acid metabolism in orchids of Panama: evidence of selection for weak and strong modes

Katia Silvera; Louis S. Santiago; Klaus Winter

Crassulacean acid metabolism (CAM) is one of three metabolic pathways found in vascular plants for the assimilation of carbon dioxide. In this study, we investigate the occurrence of CAM photosynthesis in 200 native orchid species from Panama and 14 non-native species by carbon isotopic composition (δ13C) and compare these values with nocturnal acid accumulation measured by titration in 173 species. Foliar δ13C showed a bimodal distribution with the majority of species exhibiting values of approximately -28‰ (typically associated with the C3 pathway), or -15‰ (strong CAM). Although thick leaves were related to δ13C values in the CAM range, some thin-leaved orchids were capable of CAM photosynthesis, as demonstrated by acid titration. We also found species with C3 isotopic values and significant acid accumulation at night. Of 128 species with δ13C more negative than -22‰, 42 species showed nocturnal acid accumulation per unit fresh mass characteristic of weakly expressed CAM. These data suggest that among CAM orchids, there may be preferential selection for species to exhibit strong CAM or weak CAM, rather than intermediate metabolism.


Biotropica | 2000

Use of Coarse Woody Debris by the Plant Community of a Hawaiian Montane Cloud Forest1

Louis S. Santiago

Abstract Many species of woody plants in Hawaiian montane forests germinate on nurse logs or epiphytically, often developing aerial roots. This study investigated the role of fallen logs, wood fragments, and other forms of coarse woody debris (CWD; 35 cm diam.) in providing habitat for woody species in a forest with waterlogged soils. Oxidation-reduction potentials (Eh) of root mats and nurse logs (−70.1 to 278.6 mV) were higher than the underlying soil horizons (−203.6 to −128.1 mV). CWD volume varied between 135.9 and 427.9 m3/ha. Live basal area varied between 18.4 and 29.7 m2/ha and increased with total CWD volume. Seedling and sapling abundances on nurse logs were correlated with moss coverage and decomposition class. Moss coverage was the only significant predictor of seedling density on nurse logs, whereas moss coverage and log volume were important for predicting sapling density. The proportion of woody plants established on logs was higher than in a younger Hawaiian montane forest site with well-drained soils.

Collaboration


Dive into the Louis S. Santiago's collaboration.

Top Co-Authors

Avatar

Todd E. Dawson

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katia Silvera

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Joseph Wright

Smithsonian Tropical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge