Louise Ford
Liverpool School of Tropical Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Louise Ford.
Journal of Biological Chemistry | 2009
Joseph D. Turner; R. Stuart Langley; Kelly L. Johnston; Katrin Gentil; Louise Ford; Bo Wu; Maia Graham; Faye Sharpley; Barton E. Slatko; Eric Pearlman; Mark J. Taylor
Wolbachia endosymbiotic bacteria have been implicated in the inflammatory pathogenesis of filariasis. Inflammation induced by Brugia malayi female worm extract (BMFE) is dependent on Toll-like receptors 2 and 6 (TLR2/6) with only a partial requirement for TLR1. Removal of Wolbachia, lipids, or proteins eliminates all inflammatory activity. Wolbachia bacteria contain the lipoprotein biosynthesis genes Ltg and LspA but not Lnt, suggesting Wolbachia proteins cannot be triacylated, accounting for recognition by TLR2/6. Lipoprotein databases revealed 3–11 potential lipoproteins from Wolbachia. Peptidoglycan-associated lipoprotein (PAL) and Type IV secretion system-VirB6 were consistently predicted, and B. malayi Wolbachia PAL (wBmPAL) was selected for functional characterization. Diacylated 20-mer peptides of wBmPAL (Diacyl Wolbachia lipopeptide (Diacyl WoLP)) showed a near identical TLR2/6 and TLR2/1 usage compared with BMFE and bound directly to TLR2. Diacyl WoLP induced systemic tumor necrosis factor-α and neutrophil-mediated keratitis in mice. Diacyl WoLP activated monocytes induce up-regulation of gp38 on human lymphatic endothelial cells and induced dendritic cell maturation and activation. Dendritic cells primed with BMFE generated a non-polarized Th1/Th2 CD4+ T cell profile, whereas priming with Wolbachia depleted extracts (following tetracycline treatment; BMFEtet) polarized to a Th2 profile that could be reversed by reconstitution with Diacyl WoLP. BMFE generated IgG1 and IgG2c antibody responses, whereas BMFEtet or inoculation of TLR2 or MyD88−/− mice produced defective IgG2c responses. Thus, in addition to innate inflammatory activation, Wolbachia lipoproteins drive interferon-γ-dependent CD4+ T cell polarization and antibody switching.
Parasite Immunology | 2001
Mark J. Taylor; Helen F. Cross; Louise Ford; Williams H. Makunde; G.B.K.S. Prasad; Katja Bilo
Lymphatic filarial nematodes are infected with endosymbiotic Wolbachia bacteria. Lipopolysaccharide from these bacteria is the major activator of innate inflammatory responses induced directly by the parasite. Here, we propose a mechanism by which Wolbachia initiates acute inflammatory responses associated with death of parasites, leading to acute filarial lymphangitis and adverse reactions to antifilarial chemotherapy. We also speculate that repeated exposure to acute inflammatory responses and the chronic release of bacteria, results in damage to infected lymphatics and desensitization of the innate immune system. These events will result in an increased susceptibility to opportunistic infections, which cause acute dermatolymphangitis associated with lymphoedema and elephantiasis. The recognition of the contribution of endosymbiotic bacteria to filarial disease could be exploited for clinical intervention by the targeting of bacteria with antibiotics in an attempt to reduce the development of filarial pathology.
PLOS Neglected Tropical Diseases | 2010
Joseph D. Turner; Nicholas Tendongfor; Mathias Esum; Kelly L. Johnston; R. Stuart Langley; Louise Ford; Brian Faragher; Sabine Specht; Sabine Mand; Achim Hoerauf; Peter Enyong; Samuel Wanji; Mark J. Taylor
Background The risk of severe adverse events following treatment of onchocerciasis with ivermectin in areas co-endemic with loiasis currently compromises the development of control programmes and the treatment of co-infected individuals. We therefore assessed whether doxycycline treatment could be used without subsequent ivermectin administration to effectively deliver sustained effects on Onchocerca volvulus microfilaridermia and adult viability. Furthermore we assessed the safety of doxycycline treatment prior to ivermectin administration in a subset of onchocerciasis individuals co-infected with low to moderate intensities of Loa loa microfilaraemia. Methods A double-blind, randomized, field trial was conducted of 6 weeks of doxycycline (200 mg/day) alone, doxycycline in combination with ivermectin (150 µg/kg) at +4 months or placebo matching doxycycline + ivermectin at +4 months in 150 individuals infected with Onchocerca volvulus. A further 22 individuals infected with O. volvulus and low to moderate intensities of Loa loa infection were administered with a course of 6 weeks doxycycline with ivermectin at +4 months. Treatment efficacy was determined at 4, 12 and 21 months after the start of doxycycline treatment together with the frequency and severity of adverse events. Results One hundred and four (60.5%) participants completed all treatment allocations and follow up assessments over the 21-month trial period. At 12 months, doxycycline/ivermectin treated individuals had lower levels of microfilaridermia and higher frequency of amicrofilaridermia compared with ivermectin or doxycycline only groups. At 21 months, microfilaridermia in doxycycline/ivermectin and doxycycline only groups was significantly reduced compared to the ivermectin only group. 89% of the doxycycline/ivermectin group and 67% of the doxycycline only group were amicrofilaridermic, compared with 21% in the ivermectin only group. O. volvulus from doxycycline groups were depleted of Wolbachia and all embryonic stages in utero. Notably, the viability of female adult worms was significantly reduced in doxycycline treated groups and the macrofilaricidal and sterilising activity was unaffected by the addition of ivermectin. Treatment with doxycycline was well tolerated and the incidence of adverse event to doxycycline or ivermectin did not significantly deviate between treatment groups. Conclusions A six-week course of doxycycline delivers macrofilaricidal and sterilizing activities, which is not dependent upon co-administration of ivermectin. Doxycycline is well tolerated in patients co-infected with moderate intensities of L. loa microfilariae. Therefore, further trials are warranted to assess the safety and efficacy of doxycycline-based interventions to treat onchocerciasis in individuals at risk of serious adverse reactions to standard treatments due to the co-occurrence of high intensities of L. loa parasitaemias. The development of an anti-wolbachial treatment regime compatible with MDA control programmes could offer an alternative to the control of onchocerciasis in areas of co-endemicity with loiasis and at risk of severe adverse reactions to ivermectin. Trial Registration Controlled-Trials.com ISRCTN48118452
Journal of Biological Chemistry | 2005
Louise Ford; David B. Guiliano; Yelena Oksov; Asim K. Debnath; Jing Liu; Steven Williams; Mark Blaxter; Sara Lustigman
A novel filarial serine protease inhibitor (SPI) from the human parasitic nematode Onchocerca volvulus, Ov-SPI-1, was identified through the analysis of a molting third-stage larvae expressed sequence tag dataset. Subsequent analysis of the expressed sequence tag datasets of O. volvulus and other filariae identified four other members of this family. These proteins are related to the low molecular weight SPIs originally isolated from Ascaris suum where they are believed to protect the parasite from host intestinal proteases. The two Ov-spi transcripts are up-regulated in the molting larvae and adult stages of the development of the parasite. Recombinant Ov-SPI-1 is an active inhibitor of serine proteases, specifically elastase, chymotrypsin, and cathepsin G. Immunolocalization of the Ov-SPI proteins demonstrates that the endogenous proteins are localized to the basal layer of the cuticle of third-stage, molting third-stage, and fourth-stage larvae, the body channels and multivesicular bodies of third-stage larvae and the processed material found between the two cuticles during molting. In O. volvulus adult worms the Ov-SPI proteins are localized to the sperm and to eggshells surrounding the developing embryos. RNA interference targeting the Ov-spi genes resulted in the specific knockdown of the transcript levels of both Ov-spi-1 and Ov-spi-2, a loss of native proteins, and a significant reduction in both molting and viability of third-stage larvae. We suggest the Ov-SPI proteins play a vital role in nematode molting by controlling the activity of an endogenous serine protease(s). The localization data in adults also indicate that these inhibitors may be involved in other processes such as embryogenesis and spermatogenesis.
Parasites & Vectors | 2010
Kelly L. Johnston; Bo Wu; Ana F. Guimaraes; Louise Ford; Barton E. Slatko; Mark J. Taylor
BackgroundLymphatic filariasis and onchocerciasis are debilitating diseases caused by filarial nematodes. Disease pathogenesis is induced by inflammatory responses following the death of the parasite. Wolbachia endosymbionts of filariae are potent inducers of innate and adaptive inflammation and bacterial lipoproteins have been identified as the ligands that bind toll-like receptors (TLR) 2 and TLR6. Lipoproteins are important structural and functional components of bacteria and therefore enzymes involved in Wolbachia lipoprotein biosynthesis are potential chemotherapeutic targets.ResultsGlobomycin, a signal peptidase II (LspA) inhibitor, has activity against Gram-negative bacteria and a putative lspA gene has been identified from the Wolbachia genome of Brugia malayi (w Bm). The amino acids required for function are strictly conserved and functionality was verified by complementation tests in a temperature-sensitive Escherichia coli lspA mutant. Also, transformation of wild type E. coli with Wolbachia lspA conferred significant globomycin resistance. A cell-based screen has been developed utilizing a Wolbachia-containing Aedes albopictus cell line to assay novel compounds active against Wolbachia. Globomycin was screened using this assay, which resulted in a dose-dependent reduction in Wolbachia load. Furthermore, globomycin was also effective in reducing the motility and viability of adult B. malayi in vitro.ConclusionsThese studies validate lipoprotein biosynthesis as a target in an organism for which no genetic tools are available. Further studies to evaluate drugs targeting this pathway are underway as part of the A-WOL drug discovery and development program.
Cellular Microbiology | 2013
Mark J. Taylor; Denis Voronin; Kelly L. Johnston; Louise Ford
Wolbachia pipientis is a widespread intracellular bacterial symbiont of arthropods and is common in insects. One of their more exotic and unexpected hosts is the filarial nematodes, notable for the parasites responsible for onchocerciasis (river blindness), lymphatic filariasis (elephantiasis) and dirofilariasis (heartworm). Wolbachia are only present in a subgroup of the filarial nematodes and do not extend to other groups of nematodes either parasitic or free‐living. In the medically and veterinary important species that host Wolbachia, the symbiont has become an essential partner to key biological processes in the life of the nematode to the point where antibiotic elimination of the bacteria leads to a potent and effective anti‐filarial drug treatment. We review the cellular and molecular basis of Wolbachia filarial interactions and highlight the key processes provided by the endosymbiont upon which the nematodes have become entirely dependent. This dependency is primarily restricted to periods of the lifecycle with heavy metabolic demands including growth and development of larval stages and embryogenesis in the adult female. Also, the longevity of filarial parasites is compromised following depletion of the symbiont, which for the first time has delivered a safe and effective treatment to kill adult parasites with antibiotics.
International Journal for Parasitology-Drugs and Drug Resistance | 2014
Kelly L. Johnston; Louise Ford; Indira Umareddy; Simon Townson; Sabine Specht; Kenneth Pfarr; Achim Hoerauf; Ralf Altmeyer; Mark J. Taylor
Graphical abstract
Proceedings of the National Academy of Sciences of the United States of America | 2013
Bo Wu; Jacopo Novelli; Daojun Jiang; Harry A. Dailey; Frédéric Landmann; Louise Ford; Mark J. Taylor; Clotilde K. S. Carlow; Sanjay Kumar; Jeremy M. Foster; Barton E. Slatko
Lateral gene transfer events between bacteria and animals highlight an avenue for evolutionary genomic loss/gain of function. Herein, we report functional lateral gene transfer in animal parasitic nematodes. Members of the Nematoda are heme auxotrophs, lacking the ability to synthesize heme; however, the human filarial parasite Brugia malayi has acquired a bacterial gene encoding ferrochelatase (BmFeCH), the terminal step in heme biosynthesis. BmFeCH, encoded by a 9-exon gene, is a mitochondrial-targeted, functional ferrochelatase based on enzyme assays, complementation, and inhibitor studies. Homologs have been identified in several filariae and a nonfilarial nematode. RNAi and ex vivo inhibitor experiments indicate that BmFeCH is essential for viability, validating it as a potential target for filariasis control.
Journal of Biomolecular Screening | 2014
Kelly L. Johnston; Louise Ford; Mark J. Taylor
Neglected tropical diseases (NTDs) are a group of 17 diseases that typically affect poor people in tropical countries. Each has been neglected for decades in terms of funding, research, and policy, but the recent grouping of them into one unit, which can be targeted using integrated control measures, together with increased advocacy has helped to place them on the global health agenda. The World Health Organization has set ambitious goals to control or eliminate 10 NTDs by 2020 and launched a roadmap in January 2012 to guide this global plan. The result of the launch meeting, which brought together representatives from the pharmaceutical industry, donors, and politicians, was the London Declaration: a series of commitments to provide more drugs, research, and funds to achieve the 2020 goals. Drug discovery and development for these diseases are extremely challenging, and this article highlights these challenges in the context of the London Declaration, before focusing on an example of a drug discovery and development program for the NTDs onchocerciasis and lymphatic filariasis (the anti-Wolbachia consortium, A·WOL).
Parasites & Vectors | 2008
Jeremy M. Foster; Sanjay Kumar; Louise Ford; Kelly L. Johnston; Renata Ben; Carlos Graeff-Teixeira; Mark J. Taylor
The majority of filarial nematodes harbour Wolbachia endobacteria, including the major pathogenic species in humans, Onchocerca volvulus, Brugia malayi and Wuchereria bancrofti. These obligate endosymbionts have never been demonstrated unequivocally in any non-filariid nematode. However, a recent report described the detection by PCR of Wolbachia in the metastrongylid nematode, Angiostrongylus cantonensis (rat lungworm), a leading cause of eosinophilic meningitis in humans. To address the intriguing possibility of Wolbachia infection in nematode species distinct from the Family Onchocercidae, we used both PCR and immunohistochemistry to screen samples of A. cantonensis and A. costaricensis for the presence of this endosymbiont. We were unable to detect Wolbachia in either species using these methodologies. In addition, bioinformatic and phylogenetic analyses of the Wolbachia gene sequences reported previously from A. cantonensis indicate that they most likely result from contamination with DNA from arthropods and filarial nematodes. This study demonstrates the need for caution in relying solely on PCR for identification of new endosymbiont strains from invertebrate DNA samples.