Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louise Lanoue is active.

Publication


Featured researches published by Louise Lanoue.


Nature | 2016

High-throughput discovery of novel developmental phenotypes.

Mary E. Dickinson; Ann M. Flenniken; Xiao Ji; Lydia Teboul; Michael D. Wong; Jacqueline K. White; Terrence F. Meehan; Wolfgang J. Weninger; Henrik Westerberg; Hibret Adissu; Candice N. Baker; Lynette Bower; James Brown; L. Brianna Caddle; Francesco Chiani; Dave Clary; James Cleak; Mark J. Daly; James M. Denegre; Brendan Doe; Mary E. Dolan; Sarah M. Edie; Helmut Fuchs; Valérie Gailus-Durner; Antonella Galli; Alessia Gambadoro; Juan Gallegos; Shiying Guo; Neil R. Horner; Chih-Wei Hsu

Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts. Using a standardized phenotyping platform that incorporates high-resolution 3D imaging, we identify phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts.


Journal of Nutrition | 2003

The Plausibility of Micronutrient Deficiencies Being a Significant Contributing Factor to the Occurrence of Pregnancy Complications

Carl L. Keen; Michael S. Clegg; Lynn A. Hanna; Louise Lanoue; John M. Rogers; George P. Daston; Janet Y. Uriu-Adams

Numerous studies support the concept that a major cause of pregnancy complications can be suboptimal embryonic and fetal nutrition. Although the negative effects of diets low in energy on pregnancy outcome are well documented, less clear are the effects of diets that are low in one or more essential micronutrients. However, several observational and intervention studies suggest that diets low in essential vitamins and minerals can pose a significant reproductive risk in diverse human populations. Although maternal nutritional deficiencies typically occur as a result of low dietary intakes of essential nutrients, nutritional deficiencies at the level of the conceptus can arise through multiple mechanisms. Evidence from experimental animals supports the concept that in addition to primary deficiencies, secondary embryonic and fetal nutritional deficiencies can be caused by diverse factors including genetics, maternal disease, toxicant insults and physiological stressors that can trigger a maternal acute phase response. These secondary responses may be significant contributors to the occurrence of birth defects. An implication of the above is that the frequency and severity of pregnancy complications may be reduced through an improvement in the micronutrient status of the mother.


American Journal of Medical Genetics | 1997

Limb, genital, CNS, and facial malformations result from gene/environment-induced cholesterol deficiency: Further evidence for a link to sonic hedgehog

Louise Lanoue; Deborah B. Dehart; Myron E. Hinsdale; Nobuyo Maeda; G. Stephen Tint; Kathleen K. Sulik

Low cholesterol levels produced by treating cholesterol deficient mutant mice with a cholesterol synthesis inhibitor (BM 15.766) between days 4 to 7 of pregnancy resulted in malformations consistent with those in the Smith-Lemli-Opitz syndrome (SLOS). Facial anomalies in mildly affected gestational day 12 mouse embryos included a small nose and long upper lip; in more severely affected embryos, the facial and forebrain anomalies are representative of holoprosencephaly. Additionally, abnormalities of the mid- and hind-brain were observed and included stenosis of the cerebral aqueduct at the level of the isthmus and apparent absence of the organ progenitor for the cerebellar vermis. Although not previously directly linked to cholesterol deficiency in experimental animals, limb and external genital defects were a notable outcome in this multifactorially-based cholesterol deficiency model. The results of this study provide new evidence supporting an important role for cholesterol in early embryonic development, provide additional support for the hypothesis that this role may involve the function of specific gene products, such as sonic hedgehog (shh) signaling protein, and provide a description of the pathogenesis of some of the characteristic malformations in SLOS.


Biofactors | 2010

Influence of copper on early development: Prenatal and postnatal considerations

Janet Y. Uriu-Adams; Rachel E. Scherr; Louise Lanoue; Carl L. Keen

Copper (Cu) is an essential nutrient whose requirement is increased during pregnancy and lactation. These represent times of critical growth and development, and the fetus and neonate are particularly vulnerable to deficiencies of this nutrient. Genetic mutations that predispose the offspring to inadequate stores of Cu can be life threatening as is observed in children with Menkes disease. During the last decade, severe Cu deficiency, once thought to be a rare condition, has been reported in the literature at an increasing frequency. Secondary Cu deficiencies can be induced by a variety of ways such as excessive zinc or iron intake, certain drugs, and bariatric surgery. Premature and low birth weight infants can be born with low Cu stores. A number of mechanisms can contribute to the teratogenicity of Cu including decreased activity of select cuproenzymes, increased oxidative stress, decreased nitric oxide availability, altered iron metabolism, abnormal extracellular matrix protein crosslinking, decreased angiogenesis and altered cell signaling among others. The brain, heart, and vessels as well as tissues such as lung, skin and hair, and systems including the skeletal, immune, and blood systems, are negatively affected by suboptimal Cu during development. Additionally, persistent structural, biochemical, and functional adverse effects in the offspring are noted even when Cu supplementation is initiated after birth, supporting the concept that adequate Cu nutriture during pregnancy and lactation is critical for normal development. Although Cu‐containing IUDs are an effective method for increasing intrauterine Cu concentrations and for reducing the risk of pregnancy, high amounts of dietary Cu are not thought to represent a direct developmental risk.


Journal of Nutrition | 2003

Developmental Consequences of Trace Mineral Deficiencies in Rodents: Acute and Long-Term Effects

Carl L. Keen; Lynn A. Hanna; Louise Lanoue; Janet Y. Uriu-Adams; Robert B. Rucker; Michael S. Clegg

Approximately 3% of infants born have at least one serious congenital malformation. In the U.S., an average of 10 infants per thousand die before 1 y of life; about half of these deaths can be attributed to birth defects, low birth weight or prematurity. Although the causes of developmental abnormalities are clearly multifactorial in nature, we suggest that a common factor contributing to the occurrence of developmental abnormalities is suboptimal mineral nutrition during embryonic and fetal development. Using zinc and copper as examples, evidence is presented that nutritional deficiencies can rapidly affect the developing conceptus and result in gross structural abnormalities. Deficits of zinc or copper can result in rapid changes in cellular redox balance, tissue oxidative stress, inappropriate patterns of cell death, alterations in the migration of neural crest cells and changes in the expression of key patterning genes. In addition to well-recognized malformations, mineral deficiencies during perinatal development can result in behavioral, immunological and biochemical abnormalities that persist into adulthood. Although these persistent defects can in part be attributed to subtle morphological abnormalities, in other cases they may be secondary to epigenetic or developmental changes in DNA methylation patterns. Epigenetic defects combined with subtle morphological abnormalities can influence an individuals risk for certain chronic diseases and thus influence his or her risk for morbidity and mortality later in life.


American Journal of Medical Genetics | 1997

Pathogenesis of malformations in a rodent model for Smith‐Lemli‐Opitz syndrome

Deborah B. Dehart; Louise Lanoue; G. S. Tint; Kathleen K. Sulik

The fact that Smith-Lemli-Opitz syndrome (SLOS), a syndrome comprising major malformations involving a number of organ systems, results from an abnormality in cholesterol biosynthesis, was discovered only recently. Utilizing a drug (BM 15.766) to inhibit the same step in cholesterol biosynthesis as is abnormal in those affected with SLOS, we have developed a rat model that presents with abnormalities observed as early as gestational day 12 that appear to be consistent with some of those subsequent malformations that comprise the human syndrome. Abnormalities of the brain and face include deficiency in the midline region of the upper face, narrowing of the forebrain hemispheres and of the cerebral aqueduct, and deficiency in the developing lower jaw. Associated pathogenesis, as observed on gestational day 11 in histological sections and with scanning electron microscopy, involves abnormal cell populations at the rim of the developing forebrain and in the alar plate of the lower midbrain and hind-brain. The affected cells appear abnormally rounded up, having apparently lost their normal cell contacts. The potential basis for the selective vulnerability of this cell population and the impact of its vulnerability relative to subsequent dysmorphogenesis is discussed.


Biological Trace Element Research | 1998

Assessing the effects of low boron diets on embryonic and fetal development in rodents using in vitro and in vivo model systems

Louise Lanoue; Marie W. Taubeneck; Jesus Muniz; Lynn A. Hanna; Philip L. Strong; F. Jay Murray; Forrest H. Nielsen; Curtiss D. Hunt; Carl L. Keen

To date, boron (B) essentiality has not been conclusively shown in mammals. This article summarizes the results of a series of in vitro and in vivo experiments designed to investigate the role of B in mammalian reproduction. In the first study, rat dams were fed either a low (0.04 μg B/g) or an adequate (2.00 μg B/g) B diet for 6 wk before breeding and through pregnancy; reproductive outcome was monitored on gestation day 20. Although low dietary B significantly lowered maternal blood, liver, and bone B concentrations, it had no marked effects on fetal growth or development. The goal of the second study was to assess the effects of B on the in vitro development of rat postimplantation embryos. Day 10 embryos collected from dams fed either the low or adequate B diets for at least 12 wk were cultured in serum collected from male rats exposed to one of the two dietary B treatments. Dams fed the low B diet had a significantly reduced number of implantation sites compared to dams fed the B-adequate diet. However, embryonic growth in vitro was not affected by B treatment. The aim of study 3 was to define the limits of boric acid (BA) toxicity on mouse preimplantation development in vitro. Two-cell mouse embryos were cultured in media containing graded levels of BA (from 6 to 10,000 μM). Impaired embryonic differentiation and proliferation were observed only when embryos were exposed to high levels of BA (>2000 μM), reflecting a very low level of toxicity of BA on early mouse embryonic development. Study 4 tested the effects of low (0.04 μg B/g) and adequate (2.00 μg B/g) dietary B on the in vitro development of mouse preimplantation embryos. Two-cell embryos obtained from the dams were cultured in vitro for 72 h. Maternal exposure to the low B diet for 10, 12, and 16 wk was associated with a reduction in blastocyst formation, a reduction in blastocyst cell number, and an increased number of degenerates. Collectively, these studies support the concept that B deficiency impairs early embryonic development in rodents.


Biology of Reproduction | 2003

Copper-Deficient Rat Embryos Are Characterized by Low Superoxide Dismutase Activity and Elevated Superoxide Anions

Susan N. Hawk; Louise Lanoue; Carl L. Keen; Catherine Kwik-Uribe; Robert B. Rucker; Janet Y. Uriu-Adams

Abstract The teratogenicity of copper (Cu) deficiency may result from increased oxidative stress and oxidative damage. Dams were fed either control (8.0 μg Cu/g) or Cu-deficient (0.5 μg Cu/g) diets. Embryos were collected on Gestational Day 12 for in vivo studies or on Gestational Day 10 and cultured for 48 h in Cu-deficient or Cu-adequate media for in vitro studies. Superoxide dismutase (SOD), glutathione peroxidase (GPX), and glutathione reductase (GR) activities were measured in control and Cu-deficient embryos as markers of the oxidant defense system. Superoxide anions were measured as an index of exposure to reactive oxygen species (ROS). No differences were found in GPX or GR activities among treatment groups. However, SOD activity was lower and superoxide anion concentrations higher in Cu-deficient embryos cultured in Cu-deficient serum compared to control embryos cultured in control serum. Even so, Cu-deficient embryos had similar CuZnSOD protein levels as controls. In the in vitro system, Cu-deficient embryos had a higher frequency of malformations and increased staining for superoxide anions in the forebrain, heart, forelimb, and somites compared to controls. When assessed for lipid and DNA oxidative damage, conjugated diene concentrations were similar among the groups, but a tendency was observed for Cu-deficient embryos to have higher 8-hydroxy-2′-deoxyguanosine concentrations than controls. Thus, Cu deficiency resulted in embryos with malformations and reduced SOD enzyme activity. Increased ROS concentrations in the Cu-deficient embryo may cause oxidative damage and contribute to the occurrence of developmental defects.


Biological Trace Element Research | 2008

Prenatal Zinc Deficiency: Influence on Heart Morphology and Distribution of Key Heart Proteins in a Rat Model

Veronica Lopez; Carl L. Keen; Louise Lanoue

The etiology of congenital heart disease is multifactorial, with genetics and nutritional deficiencies recognized as causative agents. Maternal zinc (Zn) deficiency is associated with an increased risk for fetal heart malformations; however, the contributing mechanisms have yet to be identified. In this study, we fed pregnant rats a Zn-adequate diet (ZnA), a Zn-deficient (ZnD), or a restricted amount of Zn adequate diet (RF) beginning on gestation day (GD) 4.5, to examine whether increased cell death and changes in cardiac neural crest cells (NCC) play a role in Zn deficiency-induced heart defects. Fetuses were collected on GD 13.5, 15.5, and 18.5 and processed for GATA-4, FOG-2, connexin-43 (Cx43), HNK-1, smooth muscle α-actin (SMA) and cleaved caspase-3 protein expression. Fetuses from ZnA-fed dams showed normal heart development, whereas fetuses from dams fed with the ZnD diet exhibited a variety of heart anomalies, particularly in the region of the outflow tract. HNK-1 expression was lower than normal in the hearts of GD13.5 and 15.5 ZnD fetuses, particularly in the right atrium and in the distal tip of the interventricular septum. Conversely, Cx43 immunoreactivity was increased throughout the heart in fetuses from ZnD dams compared to fetuses from control dams. The distribution and intensity of expression of SMA, GATA-4, FOG-2, and markers of apoptosis were similar among the three groups. We propose that Zn deficiency induced alterations in the distribution of Cx43 and HNK-1 in fetal hearts contribute to the occurrence of the developmental heart anomalies.


Experimental Biology and Medicine | 2010

Dietary factors and the risk for acute infant leukemia: Evaluating the effects of cocoa-derived flavanols on DNA topoisomerase activity

Louise Lanoue; Kerri Green; Catherine Kwik-Uribe; Carl L. Keen

There is cumulative strong evidence that diets rich in flavanols can provide certain positive health benefits, particularly with respect to the cardiovascular system. Consequently, it has been suggested that increasing ones dietary intake of flavanols may be of benefit. Complicating this idea, there are reports that high intakes of certain flavonoids during pregnancy are associated with an increased risk for acute infant leukemia due to a poison effect of select polyphenolic compounds on DNA topoisomerase (topo) II activity that promotes aberrant chromosomal translocations. In the current study, we characterized the effects of select flavanols (epicatechin and catechin monomers), and select flavanol dimers and longer oligomers, on topo II activity, and on cellular toxicity in vitro. In contrast to the chemotherapeutic drug etoposide (VP16) and the flavonol quercetin, which strongly inhibited topo II activity and increased the formation of cleavage complexes demonstrating a poison effect, the flavanols epicatechin and catechin had little effect on topo II enzyme activity. Accordingly, several fold greater concentrations of the flavanols were required to achieve cellular toxicity similar to that of quercetin and VP16 in cultures of myeloid and lymphoid cells. Low cellular toxicity and limited topo II inhibition were also observed with a procyanidin-rich cocoa extract. Of all the flavanols tested, the dimers (B2, B5 and a mix of both) exerted the greatest inhibition of topo II and inhibited cellular proliferation rates at concentrations similar to quercetin. However, in contrast to quercetin, the dimers did not function as topo II poisons. Collectively, our in vitro data show that cocoa-derived flavanols have limited effects on topo II activity and cellular proliferation in cancer cell lines. We predict that these compounds are likely to have limited leukemogenic potential at physiological concentrations.

Collaboration


Dive into the Louise Lanoue's collaboration.

Top Co-Authors

Avatar

Carl L. Keen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mical Kay Shilts

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lenna Ontai

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lindsay H. Allen

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Soo Jin Yang

Seoul Women's University

View shared research outputs
Researchain Logo
Decentralizing Knowledge