Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louise S. Dalbøge is active.

Publication


Featured researches published by Louise S. Dalbøge.


Journal of Clinical Investigation | 2014

The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss

Anna Secher; Jacob Jelsing; Arian F. Baquero; Jacob Hecksher-Sørensen; Michael A. Cowley; Louise S. Dalbøge; Gitte Hansen; Kevin L. Grove; Charles Pyke; Kirsten Raun; Lauge Schäffer; Mads Tang-Christensen; Saurabh Verma; Brent M. Witgen; Niels Vrang; Lotte Bjerre Knudsen

Liraglutide is a glucagon-like peptide-1 (GLP-1) analog marketed for the treatment of type 2 diabetes. Besides lowering blood glucose, liraglutide also reduces body weight. It is not fully understood how liraglutide induces weight loss or to what degree liraglutide acts directly in the brain. Here, we determined that liraglutide does not activate GLP-1-producing neurons in the hindbrain, and liraglutide-dependent body weight reduction in rats was independent of GLP-1 receptors (GLP-1Rs) in the vagus nerve, area postrema, and paraventricular nucleus. Peripheral injection of fluorescently labeled liraglutide in mice revealed the presence of the drug in the circumventricular organs. Moreover, labeled liraglutide bound neurons within the arcuate nucleus (ARC) and other discrete sites in the hypothalamus. GLP-1R was necessary for liraglutide uptake in the brain, as liraglutide binding was not seen in Glp1r(-/-) mice. In the ARC, liraglutide was internalized in neurons expressing proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART). Electrophysiological measurements of murine brain slices revealed that GLP-1 directly stimulates POMC/CART neurons and indirectly inhibits neurotransmission in neurons expressing neuropeptide Y (NPY) and agouti-related peptide (AgRP) via GABA-dependent signaling. Collectively, our findings indicate that the GLP-1R on POMC/CART-expressing ARC neurons likely mediates liraglutide-induced weight loss.


PLOS ONE | 2013

Hypertrophy Dependent Doubling of L-Cells in Roux-en-Y Gastric Bypass Operated Rats

Carl Frederik Hansen; Marco Bueter; Nadine Theis; Thomas A. Lutz; Sarah Juel Paulsen; Louise S. Dalbøge; Niels Vrang; Jacob Jelsing

Background and Aims Roux-en-Y gastric bypass (RYGB) leads to a rapid remission of type 2 diabetes mellitus (T2DM), but the underlying mode of action remains incompletely understood. L-cell derived gut hormones such as glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are thought to play a central role in the anti-diabetic effects of RYGB; therefore, an improved understanding of intestinal endocrine L-cell adaptability is considered pivotal. Methods The full rostrocaudal extension of the gut was analyzed in rats after RYGB and in sham-operated controls ad libitum fed or food restricted to match the body weight of RYGB rats. Total number of L-cells, as well as regional numbers, densities and mucosa volumes were quantified using stereological methods. Preproglucagon and PYY mRNA transcripts were quantified by qPCR to reflect the total and relative hormone production capacity of the L-cells. Results RYGB surgery induced hypertrophy of the gut mucosa in the food exposed regions of the small intestine coupled with a doubling in the total number of L-cells. No changes in L-cell density were observed in any region regardless of surgery or food restriction. The total gene expression capacity of the entire gut revealed a near 200% increase in both PYY and preproglucagon mRNA levels in RYGB rats associated with both increased L-cell number as well as region-specific increased transcription per cell. Conclusions Collectively, these findings indicate that RYGB in rats is associated with gut hypertrophy, an increase in L-cell number, but not density, and increased PYY and preproglucagon gene expression. This could explain the enhanced gut hormone dynamics seen after RYGB.


PLOS ONE | 2013

Characterisation of Age-Dependent Beta Cell Dynamics in the Male db/db Mice

Louise S. Dalbøge; Dorthe Lennert Christensen Almholt; Trine Skovlund Ryge Neerup; Efstathios Vassiliadis; Niels Vrang; Lars Pedersen; Keld Fosgerau; Jacob Jelsing

Aim To characterise changes in pancreatic beta cell mass during the development of diabetes in untreated male C57BLKS/J db/db mice. Methods Blood samples were collected from a total of 72 untreated male db/db mice aged 5, 6, 8, 10, 12, 14, 18, 24 and 34 weeks, for measurement of terminal blood glucose, HbA1c, plasma insulin, and C-peptide. Pancreata were removed for quantification of beta cell mass, islet numbers as well as proliferation and apoptosis by immunohistochemistry and stereology. Results Total pancreatic beta cell mass increased significantly from 2.1 ± 0.3 mg in mice aged 5 weeks to a peak value of 4.84 ± 0.26 mg (P < 0.05) in 12-week-old mice, then gradually decreased to 3.27 ± 0.44 mg in mice aged 34 weeks. Analysis of islets in the 5-, 10-, and 24-week age groups showed increased beta cell proliferation in the 10-week-old animals whereas a low proliferation is seen in older animals. The expansion in beta cell mass was driven by an increase in mean islet mass as the total number of islets was unchanged in the three groups. Conclusions/Interpretation The age-dependent beta cell dynamics in male db/db mice has been described from 5-34 weeks of age and at the same time alterations in insulin/glucose homeostasis were assessed. High beta cell proliferation and increased beta cell mass occur in young animals followed by a gradual decline characterised by a low beta cell proliferation in older animals. The expansion of beta cell mass was caused by an increase in mean islet mass and not islet number.


Journal of Pharmacology and Experimental Therapeutics | 2014

The Novel GLP-1–Gastrin Dual Agonist ZP3022 Improves Glucose Homeostasis and Increases β -Cell Mass without Affecting Islet Number in db/db Mice

Louise S. Dalbøge; Dorthe Lennert Christensen Almholt; Trine Skovlund Ryge Neerup; Niels Vrang; Jacob Jelsing; Keld Fosgerau

Antidiabetic treatments aiming to preserve or even to increase β-cell mass are currently gaining increased interest. Here we investigated the effect of chronic treatment with the novel glucagon-like peptide-1 (GLP-1)–gastrin dual agonist ZP3022 (HGEGTFTSDLSKQMEEEAVRLFIEWLKN-8Ado-8Ado-YGWLDF-NH2) on glycemic control, β-cell mass and proliferation, and islet number. Male db/db mice were treated with ZP3022, liraglutide, or vehicle for 2, 4, or 8 weeks, with terminal assessment of hemoglobin A1c, basal blood glucose, and plasma insulin concentrations. Pancreata were removed for immunohistochemical staining and stereological quantification of β-cell mass, islet numbers, proliferation, and apoptosis. Treatment with ZP3022 or liraglutide led to a significant improvement in glycemic control. ZP3022 treatment resulted in a sustained increase in β-cell mass after 4 and 8 weeks of treatment, whereas the effect of liraglutide was transient. The expansion in β-cell mass observed in the ZP3022-treated mice appeared to be driven by increased β-cell proliferation in existing islets rather than by formation of new islets, as mean islet mass increased but the number of islets remained constant. Our data demonstrate that the GLP-1–gastrin dual agonist ZP3022 causes a sustained improvement in glycemic control accompanied by an increase in β-cell mass, increased proliferation, and increased mean islet mass. The results highlight that the GLP-1–gastrin dual agonist increases β-cell mass more than liraglutide and that dual agonists could potentially be developed into a new class of antidiabetic treatments.


Journal of Peptide Science | 2015

Synthesis and evaluation of novel lipidated neuromedin U analogs with increased stability and effects on food intake

Louise S. Dalbøge; Søren L. Pedersen; Søren B. van Witteloostuijn; Jakob E. Rasmussen; Kristoffer T. Rigbolt; Knud J. Jensen; Birgitte Holst; Niels Vrang; Jacob Jelsing

Neuromedin U (NMU) is a 25 amino acid peptide expressed and secreted in the brain and gastrointestinal tract. Data have shown that peripheral administration of human NMU decreases food intake and body weight and improves glucose tolerance in mice, suggesting that NMU receptors constitute a possible anti‐diabetic and anti‐obesity drug target. However, the clinical use of native NMU is hampered by a poor pharmacokinetic profile. In the current study, we report in vitro and in vivo data from a series of novel lipidated NMU analogs.


Endocrinology | 2016

Effects of Peripheral Neurotensin on Appetite Regulation and Its Role in Gastric Bypass Surgery

Cecilia Ratner; L. Skov; Zindy Raida; Thomas Bächler; Kathrin Bellmann-Sickert; Christelle Le Foll; Bjørn Sivertsen; Louise S. Dalbøge; Bolette Hartmann; Annette G. Beck-Sickinger; Andreas N. Madsen; Jacob Jelsing; Jens J. Holst; Thomas A. Lutz; Zane B. Andrews; Birgitte Holst

Neurotensin (NT) is a peptide expressed in the brain and in the gastrointestinal tract. Brain NT inhibits food intake, but the effects of peripheral NT are less investigated. In this study, peripheral NT decreased food intake in both mice and rats, which was abolished by a NT antagonist. Using c-Fos immunohistochemistry, we found that peripheral NT activated brainstem and hypothalamic regions. The anorexigenic effect of NT was preserved in vagotomized mice but lasted shorter than in sham-operated mice. This in combination with a strong increase in c-Fos activation in area postrema after ip administration indicates that NT acts both through the blood circulation and the vagus. To improve the pharmacokinetics of NT, we developed a pegylated NT peptide, which presumably prolonged the half-life, and thus, the effect on feeding was extended compared with native NT. On a molecular level, the pegylated NT peptide increased proopiomelanocortin mRNA in the arcuate nucleus. We also investigated the importance of NT for the decreased food intake after gastric bypass surgery in a rat model of Roux-en-Y gastric bypass (RYGB). NT was increased in plasma and in the gastrointestinal tract in RYGB rats, and pharmacological antagonism of NT increased food intake transiently in RYGB rats. Taken together, our data suggest that NT is a metabolically active hormone, which contributes to the regulation of food intake.


Molecular Pain | 2013

Impaired behavioural pain responses in hph-1 mice with inherited deficiency in GTP cyclohydrolase 1 in models of inflammatory pain

Arafat Nasser; Ole J. Bjerrum; Anne-Marie Heegaard; Anette Torvin Møller; Maj Britt Larsen; Louise S. Dalbøge; Erik Dupont; Troels Staehelin Jensen; Lisbeth Birk Møller

BackgroundGTP cyclohydrolase 1 (GTP-CH1), the rate-limiting enzyme in the synthesis of tetrahydrobiopterin (BH4), encoded by the GCH1 gene, has been implicated in the development and maintenance of inflammatory pain in rats. In humans, homozygous carriers of a “pain-protective” (PP) haplotype of the GCH1 gene have been identified exhibiting lower pain sensitivity, but only following pain sensitisation. Ex vivo, the PP GCH1 haplotype is associated with decreased induction of GCH1 after stimulation, whereas the baseline BH4 production is not affected. Contrary, loss of function mutations in the GCH1 gene results in decreased basal GCH1 expression, and is associated with DOPA-responsive dystonia (DRD). So far it is unknown if such mutations affect acute and inflammatory pain.ResultsIn the current study, we examined the involvement of the GCH1 gene in pain models using the hyperphenylalaninemia 1 (hph-1) mouse, a genetic model for DRD, with only 10% basal GTP-CH1 activity compared to wild type mice. The study included assays for determination of acute nociception as well as models for pain after sensitisation. Pain behavioural analysis of the hph-1 mice showed reduced pain-like responses following intraplantar injection of CFA, formalin and capsaicin; whereas decreased basal level of GTP-CH1 activity had no influence in naïve hph-1 mice on acute mechanical and heat pain thresholds. Moreover, the hph-1 mice showed no signs of motor impairment or dystonia-like symptoms.ConclusionsIn this study, we demonstrate novel evidence that genetic mutations in the GCH1 gene modulate pain-like hypersensitivity. Together, the present data suggest that BH4 is not important for basal heat and mechanical pain, but they support the hypothesis that BH4 plays a role in inflammation-induced hypersensitivity. Our studies suggest that the BH4 pathway could be a therapeutic target for the treatment of inflammatory pain conditions. Moreover, the hph-1 mice provide a valid model to study the consequence of congenital deficiency of GCH1 in painful conditions.


Peptides | 2015

Neuromedin U inhibits food intake partly by inhibiting gastric emptying

Louise S. Dalbøge; Søren L. Pedersen; Thomas Secher; Birgitte Holst; Niels Vrang; Jacob Jelsing

Neuromedin U (NMU) is a gut-brain peptide, implicated in energy and glucose homeostasis via the peripherally expressed NMU receptor 1 (NMUR1) and the central NMUR2. We investigated the effects of a lipidated NMU analog on gastric emptying (GE), glucose homeostasis and food intake to evaluate the use of a NMU analog as drug candidate for treatment of obesity and diabetes. Finally mRNA expression of NMU and NMUR1 in the gut and NMUR2 in the hypothalamus was investigated using a novel chromogen-based in situ hybridization (ISH) assay. Effects on food intake (6 and 18 h post dosing) were addressed in both mice and rats. The effects on GE and glycaemic control were assessed in mice, immediately after the first dose and after seven days of bidaily (BID) dosing. The lipidated NMU analog exerted robust reductions in GE and food intake in mice and improved glycaemic control when measured immediately after the first dose. No effects were observed after seven days BID. In rats, the analog induced only a minor effect on food intake. NMU mRNA was detected in the enteric nervous system throughout the gut, whereas NMUR1 was confined to the lamina propria. NMUR2 was detected in the paraventricular (PVN) and arcuate nuclei (ARC) in mice, with a reduced expression in ARC in rats. In summary, the anorectic effect of the lipidated NMU is partly mediated by a decrease in gastric emptying which is subject to tachyphylaxis after continuous dosing. Susceptibility to NMU appears to be species specific.


PLOS ONE | 2015

A Hamster Model of Diet-Induced Obesity for Preclinical Evaluation of Anti-Obesity, Anti-Diabetic and Lipid Modulating Agents

Louise S. Dalbøge; Philip J. Pedersen; Gitte Hansen; Katrine Fabricius; Henrik B. Hansen; Jacob Jelsing; Niels Vrang

Aim Unlike rats and mice, hamsters develop hypercholesterolemia, and hypertriglyceridemia when fed a cholesterol-rich diet. Because hyperlipidemia is a hallmark of human obesity, we aimed to develop and characterize a novel diet-induced obesity (DIO) and hypercholesterolemia Golden Syrian hamster model. Methods and Results Hamsters fed a highly palatable fat- and sugar-rich diet (HPFS) for 12 weeks showed significant body weight gain, body fat accumulation and impaired glucose tolerance. Cholesterol supplementation to the diet evoked additional hypercholesterolemia. Chronic treatment with the GLP-1 analogue, liraglutide (0.2 mg/kg, SC, BID, 27 days), normalized body weight and glucose tolerance, and lowered blood lipids in the DIO-hamster. The dipeptidyl peptidase-4 (DPP-4) inhibitor, linagliptin (3.0 mg/kg, PO, QD) also improved glucose tolerance. Treatment with peptide YY3-36 (PYY3-36, 1.0 mg/kg/day) or neuromedin U (NMU, 1.5 mg/kg/day), continuously infused via a subcutaneous osmotic minipump for 14 days, reduced body weight and energy intake and changed food preference from HPFS diet towards chow. Co-treatment with liraglutide and PYY3-36 evoked a pronounced synergistic decrease in body weight and food intake with no lower plateau established. Treatment with the cholesterol uptake inhibitor ezetimibe (10 mg/kg, PO, QD) for 14 days lowered plasma total cholesterol with a more marked reduction of LDL levels, as compared to HDL, indicating additional sensitivity to cholesterol modulating drugs in the hyperlipidemic DIO-hamster. In conclusion, the features of combined obesity, impaired glucose tolerance and hypercholesterolemia in the DIO-hamster make this animal model useful for preclinical evaluation of novel anti-obesity, anti-diabetic and lipid modulating agents.


Journal of Peptide Science | 2017

GUB06-046, a novel secretin/glucagon-like peptide 1 co-agonist, decreases food intake, improves glycemic control, and preserves beta cell mass in diabetic mice

Søren B. van Witteloostuijn; Louise S. Dalbøge; Gitte Hansen; Søren Roi Midtgaard; Grethe Vestergaard Jensen; Knud J. Jensen; Niels Vrang; Jacob Jelsing; Søren L. Pedersen

Bariatric surgery is currently the most effective treatment of obesity, which has spurred an interest in developing pharmaceutical mimetics. It is thought that the marked body weight‐lowering effects of bariatric surgery involve stimulated secretion of appetite‐regulating gut hormones, including glucagon‐like peptide 1. We here report that intestinal expression of secretin is markedly upregulated in a rat model of Roux‐en‐Y gastric bypass, suggesting an additional role of secretin in the beneficial metabolic effects of Roux‐en‐Y gastric bypass. We therefore developed novel secretin‐based peptide co‐agonists and identified a lead compound, GUB06‐046, that exhibited potent agonism of both the secretin receptor and glucagon‐like peptide 1 receptor. Semi‐acute administration of GUB06‐046 to lean mice significantly decreased cumulative food intake and improved glucose tolerance. Chronic administration of GUB06‐046 to diabetic db/db mice for 8 weeks improved glycemic control, as indicated by a 39% decrease in fasting blood glucose and 1.6% reduction of plasma HbA1c levels. Stereological analysis of db/db mice pancreata revealed a 78% increase in beta‐cell mass after GUB06‐046 treatment, with no impact on exocrine pancreas mass or pancreatic duct epithelial mass. The data demonstrate beneficial effects of GUB06‐046 on appetite regulation, glucose homeostasis, and beta‐cell mass in db/db mice, without proliferative effects on the exocrine pancreas and the pancreatic duct epithelium. Copyright

Collaboration


Dive into the Louise S. Dalbøge's collaboration.

Top Co-Authors

Avatar

Jacob Jelsing

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Niels Vrang

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Birgitte Holst

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Jens J. Holst

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Filip K. Knop

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Jens Pedersen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge