Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Niels Vrang is active.

Publication


Featured researches published by Niels Vrang.


Nature | 1998

Hypothalamic CART is a new anorectic peptide regulated by leptin

Peter Kristensen; Martin Edward Judge; Lars Thim; Ulla Ribel; Kennet Neist Christjansen; Birgitte S. Wulff; Jes Thorn Clausen; Per B. Jensen; Ole Madsen; Niels Vrang; Philip J. Larsen; Sven Hastrup

The mammalian hypothalamus strongly influences ingestive behaviour through several different signalling molecules and receptor systems. Here we show that CART (cocaine- and amphetamine-regulated transcript), a brain-located peptide, is a satiety factor and is closely associated with the actions of two important regulators of food intake, leptin and neuropeptide Y. Food-deprived animals show a pronounced decrease in expression of CART messenger RNA in the arcuate nucleus. In animal models of obesity with disrupted leptin signalling, CART mRNA is almost absent from the arcuate nucleus. Peripheral administration of leptin to obese mice stimulates CART mRNA expression. When injected intracerebroventricularly into rats, recombinant CART peptide inhibits both normal and starvation-induced feeding, and completely blocks the feeding response induced by neuropeptide Y. An antiserum against CART increases feeding in normal rats, indicating that CART may be an endogenous inhibitor of food intake in normal animals.


Nature Medicine | 2000

The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake

Mads Tang-Christensen; Philip J. Larsen; Jesper Thulesen; John Rømer; Niels Vrang

The dorsomedial hypothalamic nucleus harbors leptin sensitive neurons and is intrinsically connected to hypothalamic nuclei involved in feeding behavior. However, it also receives ascending input from the visceroceptive neurons of the brainstem. We have identified a unique glucagon-like-peptide-2 containing neuronal pathway connecting the nucleus of the solitary tract with the dorsomedial hypothalamic nucleus. A glucagon-like-peptide-2 fiber plexus targets neurons expressing its receptor within the dorsomedial hypothalamic nucleus. Pharmacological and behavioral studies confirmed that glucagon-like-peptide-2 signaling is a specific transmitter inhibiting rodent feeding behavior and with potential long-term effects on body weight homeostasis. The glucagon-like-peptide-1 receptor antagonist, Exendin (9–39) is also a functional antagonist of centrally applied glucagon-like-peptide-2.


Journal of Clinical Investigation | 2014

The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss

Anna Secher; Jacob Jelsing; Arian F. Baquero; Jacob Hecksher-Sørensen; Michael A. Cowley; Louise S. Dalbøge; Gitte Hansen; Kevin L. Grove; Charles Pyke; Kirsten Raun; Lauge Schäffer; Mads Tang-Christensen; Saurabh Verma; Brent M. Witgen; Niels Vrang; Lotte Bjerre Knudsen

Liraglutide is a glucagon-like peptide-1 (GLP-1) analog marketed for the treatment of type 2 diabetes. Besides lowering blood glucose, liraglutide also reduces body weight. It is not fully understood how liraglutide induces weight loss or to what degree liraglutide acts directly in the brain. Here, we determined that liraglutide does not activate GLP-1-producing neurons in the hindbrain, and liraglutide-dependent body weight reduction in rats was independent of GLP-1 receptors (GLP-1Rs) in the vagus nerve, area postrema, and paraventricular nucleus. Peripheral injection of fluorescently labeled liraglutide in mice revealed the presence of the drug in the circumventricular organs. Moreover, labeled liraglutide bound neurons within the arcuate nucleus (ARC) and other discrete sites in the hypothalamus. GLP-1R was necessary for liraglutide uptake in the brain, as liraglutide binding was not seen in Glp1r(-/-) mice. In the ARC, liraglutide was internalized in neurons expressing proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART). Electrophysiological measurements of murine brain slices revealed that GLP-1 directly stimulates POMC/CART neurons and indirectly inhibits neurotransmission in neurons expressing neuropeptide Y (NPY) and agouti-related peptide (AgRP) via GABA-dependent signaling. Collectively, our findings indicate that the GLP-1R on POMC/CART-expressing ARC neurons likely mediates liraglutide-induced weight loss.


Brain Research | 1999

Recombinant CART peptide induces c-Fos expression in central areas involved in control of feeding behaviour

Niels Vrang; Mads Tang-Christensen; Philip J. Larsen; Peter Kristensen

We have recently shown that the hypothalamic neuropeptide CART (cocaine-amphetamine-regulated-transcript) is a leptin dependent endogenous satiety factor in the rat. In the present study we confirm and extend our previous observations by showing that intracerebroventricular (i.c.v.) administered CART(42-89) dose-dependently inhibits 3-h food intake in food restricted rats with a lowest effective dose of 0.5 microgram. CART also potently inhibits NPY-induced food intake in satiated rats as well as nighttime food intake in free feeding animals. To identify brain areas potentially involved in mediating the anorectic effects of CART, the temporal expression pattern of the immediate early gene c-fos was examined in the central nervous system by immunohistochemistry in rats receiving recombinant CART. Compared to vehicle, CART induced c-Fos expression in several hypothalamic and brainstem structures implicated in the central control of food intake. In the hypothalamus, high numbers of c-Fos immunoreactive (-ir) cells were observed in the medial parvocellular part of the paraventricular nucleus and in the posterior part of the dorsomedial nucleus. Lower numbers of c-Fos positive nuclei were found in the supraoptic and arcuate nuclei. A relatively high number of c-Fos-ir cells was found in the central nucleus of the amygdala. In the brainstem, c-Fos-positive nuclei were found in the parabrachial nucleus, and in the nucleus of the solitary tract. Notably both the area postrema and the dorsal motor nucleus of the vagus were virtually devoid of c-Fos-ir cells. The present experiments suggest that CART peptide exerts its inhibitory effects on appetite by activating hypothalamic and brainstem neurones implicated in the central control of feeding behaviour and metabolism.


Diabetes, Obesity and Metabolism | 2012

Liraglutide: short-lived effect on gastric emptying—long lasting effects on body weight

Jacob Jelsing; Niels Vrang; Gesine Hansen; Kirsten Raun; Mads Tang-Christensen; L. Bjerre Knudsen

Aim: Previous studies with the novel once daily glucagon‐like peptide‐1 (GLP‐1) analogue liraglutide and the GLP‐1 receptor agonist exenatide have revealed profound insulinotrophic and antidiabetic effects, but also potent effects on gastric emptying (GE) and long‐term and lasting reductions in body weight. In this study, we examined the acute and chronic effects of two different GLP‐1 analogues with different pharmacokinetic profiles on GE, food intake and body weight.


Journal of Endocrinology | 2010

Long-term characterization of the diet-induced obese and diet-resistant rat model: a polygenetic rat model mimicking the human obesity syndrome.

Andreas N. Madsen; Gitte Hansen; Sarah Juel Paulsen; Kirsten Lykkegaard; Mads Tang-Christensen; Harald S. Hansen; Barry E. Levin; Philip J. Larsen; Lotte Bjerre Knudsen; Keld Fosgerau; Niels Vrang

The availability of useful animal models reflecting the human obesity syndrome is crucial in the search for novel compounds for the pharmacological treatment of obesity. In the current study, we have performed an extensive characterization of the obesity syndrome in a polygenetic animal model, namely the selectively bred diet-induced obese (DIO) and diet-resistant (DR) rat strains. We show that they constitute useful models of the human obesity syndrome. DIO and DR rats were fed either a high-energy (HE) or a standard chow (Chow) diet from weaning to 9 months of age. Metabolic characterization including blood biochemistry and glucose homeostasis was examined at 2, 3, 6, and 9 months of age. Furthermore, in 6-month-old HE-fed DIO rats, the anti-obesity effects of liraglutide and sibutramine were examined in a 28-day study. Only HE-fed DIO rats developed visceral obesity, hyperleptinemia, hyperinsulinemia, and dyslipidemia, and showed a worsening of glucose tolerance over time. In line with the hyperlipidemic profile, a severe hepatic fat infiltration was observed in DIO rats at 6 months of age. The effects of liraglutide and sibutramine were tested in 6-month-old DIO rats. Both compounds effectively reduced food intake and body weight in DIO rats. Liraglutide furthermore improved glucose tolerance when compared with sibutramine. Our data highlights the usefulness of a polygenetic animal model for screening of compounds affecting food intake, body weight, and glucose homeostasis. Furthermore, the results underscore the effectiveness of GLP-1 mimetics both as anti-diabetes and anti-obesity agents.


Brain Research Bulletin | 1998

Expression of Fos in the circadian system following nonphotic stimulation.

Jens D. Mikkelsen; Niels Vrang; N Mrosovsky

Syrian hamsters, Mesocricetus auratus, were confined to novel running wheels for a 3-h period, starting at approximately circadian time (CT) 4.5 (i.e., approaching the middle of their subjective day). It can be reliably predicted from the amount of running in this situation whether or not there will be a subsequent phase-shift. Expression of the immediate early genes c-fos and fosB was examined by immunocytochemistry in the suprachiasmatic nucleus (SCN), the intergeniculate leaflet (IGL) of the thalamus, and the medial pretectal area of hamsters that ran vigorously in the novel wheel and would have phase-shifted. c-Fos was increased, compared to levels in a control group left in their home cages, in the IGL, and the pretectum (PT), but decreased in the SCN. No significant changes in FosB were detected in any region examined. An additional experiment argued against the possibility that the changes in c-Fos could be attributed to a rapid advance of the pacemaker to a different phase in the circadian cycle. Counts of c-Fos-positive cells in the IGL were similar in animals given pulses of running starting at CT 4.5 and starting at CT 12.5-16 (i.e., in the subjective night when they would have been active anyway). Altogether the results support the view that activation of the IGL is important in nonphotic clock resetting, and raise the possibility that the PT may also be involved in nonphotic resetting. However, the results also indicate that novelty-induced running does not alter c-Fos induction in a phase-specific manner in the IGL. The inhibition of c-Fos in the SCN by nonphotic phase-shifting events contrasts with the well-known inducing effects of light pulses. These different effects might underlie some of the interactions between nonphotic and photic zeitgebers when both act together on the circadian system.


Brain Research | 2007

Characterization of brainstem preproglucagon projections to the paraventricular and dorsomedial hypothalamic nuclei.

Niels Vrang; Mikkel Fougt Hansen; Philip J. Larsen; Mads Tang-Christensen

In the brain preproglucagon expression is limited to a cluster of neurons in the caudal part of the nucleus of the solitary tract (NTS) as well as a smaller number of neurons that extend laterally from the NTS through the dorsal reticular area into the A1 area. These neurons process preproglucagon to glucagon-like peptide-1 (GLP-1), GLP-2, oxyntomodulin and glicentin. The neurons project mainly to the hypothalamus, where especially two nuclei involved in appetite regulation--the paraventricular (PVN) and dorsomedial (DMH) hypothalamic nuclei--are heavily endowed with GLP-immunoreactive nerve fibres. To gain further insight into this neurocircuitry, we injected the retrograde tracers cholera toxin, subunit B (ChB) and Fluorogold (FG) into the PVN and the DMH, respectively. Of thirty-five injected rats, six had successful injections that predominantly restricted within the boundaries of the PVN and DMH. Hindbrain sections from these rats were triple labelled for ChB, FG and GLP-2. A total of 24+/-1% of the PVN-projecting NTS-neurons contained GLP-2-ir whereas 67+/-4% of the DMH-projecting neurons were also stained for GLP-2, suggesting that the NTS-projections to the DMH arise mainly from preproglucagon neurons. Approximately 20% of backfilled cells in the NTS contained both retrograde tracers, therefore presumably representing neurons projecting to both the PVN and the DMH. The results of the present study demonstrate that the majority of the preproglucagon-expressing neurons in the NTS project in a target-specific manner to the hypothalamus. It is therefore possible that individual subgroups of GLP-containing neurons can mediate different physiological responses.


Brain Research | 1995

Direct projection from the suprachiasmatic nucleus to hypophysiotrophic corticotropin-releasing factor immunoreactive cells in the paraventricular nucleus of the hypothalamus demonstrated by means ofPhaseolus vulgaris-leucoagglutinin tract tracing

Niels Vrang; Philip J. Larsen; Jens D. Mikkelsen

The diurnal rhythm of the activity of the hypothalamo-pituitary-adrenal axis is generated by the circadian pacemaker located in the suprachiasmatic nuclei (SCN). However, the neuronal circuit connecting the SCN with the neurosecretory corticotropin-releasing factor (CRF) neurons in the paraventricular nucleus of the hypothalamus is not clear. To investigate the existence of a direct link between the SCN and the CRF neurons in the PVN we combined microiontopheretic injections of the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L) into the SCN with immunohistochemical detection of CRF in adrenalectomized male rats. The majority of the PHA-L-ir axons originating from the SCN terminated in the subparaventricular area. A minor contingent of fibers continued into the PVN proper, involving the medial and dorsal parvicellular subnuclei of the PVN. All PHA-L injections involving the entire SCN gave rise to PHA-L positive fibers endowed with boutons en passage and terminal boutons contacting CRF positive cell bodies in the PVN. Notably, varicosities on the PHA-L labelled fibers were present in close proximity to cell bodies and proximal dendrites of a subportion of the CRF neurons located in the periphery of the CRF cell cluster. The present study provides the first evidence to suggest a direct connection between the SCN and the CRF producing neurons of the hypothalamo-pituitary-adrenocortical axis in the PVN. Considering the sparse number of PHA-L-ir varicosities in close proximity to the CRF-ir cells, it seems likely that this direct pathway constitutes but a part of a projection system from the SCN, possibly involving multisynaptic pathways, influencing the hypothalamo-pituitary-adrenocortical axis.


Neuroscience | 1996

Origin of projections from the midbrain raphe nuclei to the hypothalamic paraventricular nucleus in the rat: A combined retrograde and anterograde tracing study

Philip J. Larsen; Anders Hay-Schmidt; Niels Vrang; Jens D. Mikkelsen

A number of neuronal functions governed by the hypothalamic paraventricular nucleus are influenced by serotonin, and it is generally believed that the moderate density of serotonin-immunoreactive fibres and terminals within the paraventricular nucleus originates from the midbrain dorsal and median raphe nuclei. To further evaluate the intricate anatomy of projections from brain stem raphe nuclei of the rat, a combination of retrograde and anterograde tracing experiments were conducted to determine the medullary raphe nuclei projection to the paraventricular nucleus. Rhodamine-labelled latex microspheres, Cholera toxin subunit B and FluoroGold we used as retrograde tracers. Intracerebroventricular injections into the third ventricle of all retrograde tracers labelled a distinct population of neurons in the dorsal raphe situated in the subependymal stratum adjacent to the cerebral aqueduct indicating that these cells take up the tracer from the cerebrospinal fluid. Very few retrogradely labelled neurons were seen in the median raphe after i.c.v. administration of the tracers. Retrograde tracers delivered into the medial part of the paraventricular nucleus labelled no further cells in the midbrain dorsal and median raphe nuclei, whereas a substantial number of retrogradely labelled cells emerged in the pontine raphe magnus. However, when the retrograde tracers were delivered into the lateral part of the paraventricular nucleus, avoiding leakage of the tracer into the ventricle, very few labelled neurons were seen in the dorsal and median raphe, whereas the prominent labelling of raphe magnus neurons persisted. The anatomical organization of nerve fibres terminating in the area of the paraventricular nucleus originating from midbrain raphe nuclei was studied in a series of anterograde tracing experiments using the plant lectin Phaseolus vulgaris leucoagglutinin. Injections delivered into the dorsal raphe or median raphe labelled but a few fibres in the paraventricular nucleus proper. A high number of fine calibered nerve fibres overlying the ependyma adjacent to the paraventricular nucleus was, however, seen after the injections into the subependymal rostral part of the dorsal raphe. Injections delivered into the raphe magnus gave rise to a dense plexus of terminating fibres in the parvicellular parts of the paraventricular nucleus and moderately innervated the posterior magnocellular part of the paraventricular nucleus as well as the magnocellular supraoptic nucleus. Concomitant visualization of serotonin-immunoreactive neurons and retrograde FluoroGold-tracing from the paraventricular nucleus revealed that none of the serotonergic neurons of the raphe magnus projects to this nucleus, while a few of the neurons putatively projecting to the paraventricular nucleus from the median raphe are serotonergic. The current observations suggest that the raphe magnus constitute by far the largest raphe input to the paraventricular nucleus and strongly questions the earlier held view that most raphe fibres innervating the paraventricular nucleus are derived from the midbrain dorsal and median raphe. However, the source of serotonergic innervation of the paraventricular nucleus remains elusive.

Collaboration


Dive into the Niels Vrang's collaboration.

Top Co-Authors

Avatar

Jacob Jelsing

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Knud J. Jensen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Jens D. Mikkelsen

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Juel Paulsen

University of Southern Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge