Louise Sandberg Sørensen
Technical University of Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Louise Sandberg Sørensen.
Science | 2012
Andrew Shepherd; Erik R. Ivins; Geruo A; Valentina Roberta Barletta; Michael J. Bentley; Srinivas Bettadpur; Kate Briggs; David H. Bromwich; René Forsberg; Natalia Galin; Martin Horwath; Stan Jacobs; Ian Joughin; Matt A. King; Jan T. M. Lenaerts; Jilu Li; Stefan R. M. Ligtenberg; Adrian Luckman; Scott B. Luthcke; Malcolm McMillan; Rakia Meister; Glenn A. Milne; J. Mouginot; Alan Muir; Julien P. Nicolas; John Paden; Antony J. Payne; Hamish D. Pritchard; Eric Rignot; Helmut Rott
Warming and Melting Mass loss from the ice sheets of Greenland and Antarctica account for a large fraction of global sea-level rise. Part of this loss is because of the effects of warmer air temperatures, and another because of the rising ocean temperatures to which they are being exposed. Joughin et al. (p. 1172) review how ocean-ice interactions are impacting ice sheets and discuss the possible ways that exposure of floating ice shelves and grounded ice margins are subject to the influences of warming ocean currents. Estimates of the mass balance of the ice sheets of Greenland and Antarctica have differed greatly—in some cases, not even agreeing about whether there is a net loss or a net gain—making it more difficult to project accurately future sea-level change. Shepherd et al. (p. 1183) combined data sets produced by satellite altimetry, interferometry, and gravimetry to construct a more robust ice-sheet mass balance for the period between 1992 and 2011. All major regions of the two ice sheets appear to be losing mass, except for East Antarctica. All told, mass loss from the polar ice sheets is contributing about 0.6 millimeters per year (roughly 20% of the total) to the current rate of global sea-level rise. The mass balance of the polar ice sheets is estimated by combining the results of existing independent techniques. We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth’s polar ice sheets. We find that there is good agreement between different satellite methods—especially in Greenland and West Antarctica—and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by –142 ± 49, +14 ± 43, –65 ± 26, and –20 ± 14 gigatonnes year−1, respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 ± 0.20 millimeter year−1 to the rate of global sea-level rise.
Geophysical Research Letters | 2015
Johan Nilsson; Paul Vallelonga; Sebastian Bjerregaard Simonsen; Louise Sandberg Sørensen; René Forsberg; Dorthe Dahl-Jensen; Motohiro Hirabayashi; Kumiko Goto-Azuma; Christine S. Hvidberg; Helle A. Kjær; Kazuhide Satow
CryoSat-2 data are used to study elevation changes over an area in the interior part of the Greenland Ice Sheet during the extreme melt event in July 2012. The penetration of the radar signal into dry snow depends heavily on the snow stratigraphy, and the rapid formation of refrozen ice layers can bias the surface elevations obtained from radar altimetry. We investigate the change in CryoSat-2 waveforms and elevation estimates over the melt event and interpret the findings by comparing in situ surface and snow pit observations from the North Greenland Eemian Ice Drilling Project camp. The investigation shows a major transition of scattering properties around the area, and an apparent elevation increase of 56 ± 26 cm is observed in reprocessed CryoSat-2 data. We suggest that this jump in elevation can be explained by the formation of a refrozen melt layer that raised the reflective surface, introducing a positive elevation bias.
Remote Sensing Letters | 2012
Sine Munk Hvidegaard; Louise Sandberg Sørensen; René Forsberg
Elevation data from airborne Light Detection and Ranging (LiDAR) campaigns are used in an attempt to evaluate the accuracy of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) global digital elevation model (GDEM) in Greenland. The LiDAR elevation data set is characterized by a high spatial resolution of about 1 m and elevation accuracy of 20–30 cm root mean square error (RMSE). The LiDAR data sets used were acquired during ice-monitoring campaigns carried out from 2003 to 2008. The study areas include ice-free regions, local ice caps and the ice sheet margin. A linear error of 15–65 m was derived, which is far greater than the 20-m product specification. This estimation is biased by both the seasonal and the climatic changes in local ice caps because the ASTER GDEM was computed from imagery acquired in the period 2000–2009. High sloping areas along the coastal regions of Greenland and the effect of the number of scenes used to generate the ASTER GDEM as well as relief are associated with the GDEM accuracy.
Journal of Geophysical Research | 2012
R. T. W. L. Hurkmans; Jonathan L. Bamber; Louise Sandberg Sørensen; Ian Joughin; Curt H. Davis; William B. Krabill
Estimation of ice sheet mass balance from satellite altimetry requires interpolation of point-scale elevation change (dH/dt) data over the area of interest. The largest dH/dt values occur over narrow, fast-flowing outlet glaciers, where data coverage of current satellite altimetry is poorest. In those areas, straightforward interpolation of data is unlikely to reflect the true patterns of dH/dt. Here, four interpolation methods are compared and evaluated over Jakobshavn Isbrae, an outlet glacier for which widespread airborne validation data are available from NASAs Airborne Topographic Mapper (ATM). The four methods are ordinary kriging (OK), kriging with external drift (KED), where the spatial pattern of surface velocity is used as a proxy for that of dH/dt, and their spatiotemporal equivalents (ST-OK and ST-KED). KED assumes a linear relationship between spatial gradients of velocity and dH/dt, which is confirmed for both negative (Pearsons correlation ρ < −0.85) and, to a lesser degree, positive (ρ = 0.73) dH/dt values. When compared to ATM data, KED and ST-KED yield more realistic spatial patterns and higher thinning rates (over 20 m yr−1 as opposed to 7 m yr−1 for OK). Spatiotemporal kriging smooths inter-annual variability and improves interpolation in periods with sparse data coverage and we conclude, therefore, that ST-KED produces the best results. Using this method increases volume loss estimates from Jakobshavn Isbrae by up to 20% compared to those obtained by OK. The proposed interpolation method will improve ice sheet mass balance reconstructions from existing and past satellite altimeter data sets, with generally poor sampling of outlet glaciers.
Journal of remote sensing | 2015
Joanna Fredenslund Levinsen; Kirill Khvorostovsky; F. Ticconi; Andrew Shepherd; René Forsberg; Louise Sandberg Sørensen; Alan Muir; N. Pie; Denis Felikson; Thomas Flament; R. Hurkmans; Geir Moholdt; Brian C. Gunter; R. C. Lindenbergh; M. Kleinherenbrink
For more than two decades, radar altimetry missions have provided continuous elevation estimates of the Greenland ice sheet (GrIS). Here, we propose a method for using such data to estimate ice-sheet-wide surface elevation changes (SECs). The final data set will be based on observations acquired from the European Space Agency’s Environmental Satellite (ENVISAT), European Remote Sensing (ERS)-1 and -2, CryoSat-2, and, in the longer term, Sentinel-3 satellites. In order to find the best-performing method, an intercomparison exercise has been carried out in which the scientific community was asked to provide their best SEC estimates as well as feedback sheets describing the applied method. Due to the hitherto few radar-based SEC analyses as well as the higher accuracy of laser data, the participants were asked to use either ENVISAT radar or ICESat (Ice, Cloud, and land Elevation Satellite) laser altimetry over the Jakobshavn Isbræ drainage basin. The submissions were validated against airborne laser-scanner data, and intercomparisons were carried out to analyse the potential of the applied methods and to find whether the two altimeters were capable of resolving the same signal. The analyses found great potential of the applied repeat-track and cross-over techniques, and, for the first time over Greenland, that repeat-track analyses from radar altimetry agreed well with laser data. Since topography-related errors can be neglected in cross-over analyses, it is expected that the most accurate, ice-sheet-wide SEC estimates are obtained by combining the cross-over and repeat-track techniques. It is thus possible to exploit the high accuracy of the former and the large spatial data coverage of the latter. Based on CryoSat’s different operation modes, and the increased spatial and temporal data coverage, this shows good potential for a future inclusion of CryoSat-2 and Sentinel-3 data to continuously obtain accurate SEC estimates both in the interior and margin ice sheet.
2011 IAG General Assembly | 2014
Karina Nielsen; Louise Sandberg Sørensen; Shfaqat Abbas Khan; G. Spada; Sebastian Bjerregaard Simonsen; René Forsberg
Constraining glacial isostatic adjustment (GIA) i.e. the Earth’s viscoelastic response to past ice changes, is an important task, because GIA is a significant correction in gravity-based ice sheet mass balance estimates. Here, we investigate how temporal variations in the observed and modeled crustal displacements due to the Earth’s response to ongoing ice mass changes can contribute to the process of constraining GIA. We use mass change grids of the Greenland ice sheet (GrIS) derived from NASA’s high resolution Ice, Cloud and land Elevation Satellite (ICESat) data in three overlapping time spans covering the period 2004–2009 to estimate temporal variations in the elastic response due to present day ice mass loss. The modeled crustal displacements (elastic + GIA) are compared with GPS time series from five permanent sites (KELY, KULU, QAQ1, THU2, and SCOR). We find, that the modeled pattern of elastic crustal displacements shows pronounced variation during the observation period, where an increase in elastic displacement is found at the northwest coast of Greenland, while a decrease is found at the southeast coast. This pattern of temporal changes is supported by the GPS observations. We find, that the temporal behavior of the ICESat-based modeled elastic response agrees well with the GPS observations at the sites KELY, QAQ1, and SCOR. This suggests, that our elastic models are able to resolve the temporal changes in the observed uplift, which indicates that the elastic uplift models are reliable at these sites. Therefore, we conclude that these sites are useful for constraining GIA.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2016
Joanna Fredenslund Levinsen; Sebastian Bjerregaard Simonsen; Louise Sandberg Sørensen; René Forsberg
Beam-limited footprints from conventional satellite radar altimeters have diameters of up to tens of kilometers. Topography within the footprint results in a displacement of the reflecting point from Nadir to the point of closest approach relative to the satellite. Several methods exist for correcting for such mispointing errors. Here, two techniques are applied to observations near Jakobshavn Isbræ, acquired with Envisats Radar Altimeter (RA-2). The a priori knowledge on the surface topography is obtained from a digital elevation model. The methods relocate the measurement location horizontally to agree with the measured range. One method assumes a constant surface slope within the footprint and uses this and the surface aspect to estimate the displacement parameter; the other locates the optimal relocation point using local topography. The results of the two methods are evaluated against airborne laser-scanner data from the airborne topographic mapper. We find that the accuracy of the relocation depends on both the technique and the spatial resolution of the digital elevation model, and that this dependency varies with surface roughness. Thus, the relocation may be associated with significant errors, which will lower the accuracy of cryospheric studies based on radar altimetry data. We find that the most accurate results are obtained when assessing the full local topography. Furthermore, errors in data over the steep margin are minimized the most when using a spatial resolution of 2 km; the effect of the resolution over regions with a smoother topography is minor.
Journal of remote sensing | 2015
Sebastian Bjerregaard Simonsen; Valentina Roberta Barletta; René Forsberg; Louise Sandberg Sørensen
As the rapid reduction in ice volume of the Greenland ice sheet (GrIS) continues, increased melt water flux from the GrIS enters the deep Greenlandic fjords. This increased freshwater flux may change the salinity and eventually the ecology of the fjords. Here, we present a case study in which we, from various remote-sensing data sets, estimate the freshwater flux from the GrIS into a specific fjord system, the Godthåbsfjord, in southwest Greenland. The area of the GrIS draining into Godthåbsfjord covers approximately 36,700 km2. The large areal extent and the multiple outlets from the GrIS hamper in situ observations. Here, we evaluate available data from remote sensing and find a drainage basin in rapid change. An analysis of data from the Gravity Recovery and Climate Experiment (GRACE) satellites shows a mean seasonal freshwater flux into Godthåbsfjord of 18.2 ± 1.2 Gt, in addition to an imbalance in the mass balance of the drainage basin from 2003 to 2013 of 14.4 ± 0.2 Gt year−1. Altimetry data from air and spaceborne missions also suggest rapid changes in the outlet glacier dynamics. We find that only applying data from the Ice, Cloud, and land Elevation Satellite (ICESat) mission the mass change of the Godthåbsfjord drainage basin is significantly underestimated. When including additional laser-altimetry surveys, to account for changes in the outlet glaciers elevation, not captured by ICESat, the altimetry data were able to reconcile the basin mass balance with the gravimetric estimate and provide a higher spatial resolution of the mass changes.
Remote Sensing | 2018
Louise Sandberg Sørensen; Sebastian Bjerregaard Simonsen; Kirsty Langley; Laurence Gray; Veit Helm; Johan Nilsson; Lars Stenseng; Henriette Skourup; René Forsberg; Malcolm Davidson
The study presented here is focused on the assessment of surface elevations derived from CryoSat-2 SARIn level 1b data over the Austfonna ice cap, Svalbard, in 2016. The processing chain that must be applied to the CryoSat-2 waveforms to derive heights is non-trivial, and consists of multiple steps, all requiring subjective choices of methods such as the choice of retracker, geo-relocation, and outlier rejection. Here, we compare six CryoSat-2 level-2 type data sets of surface elevations derived using different SARIn processing chains. These data sets are validated against surface elevation data collected from an airborne laser scanner, during a dedicated CryoSat validation experiment field campaign carried out in April 2016. The flight pattern of the airborne campaign was designed so that elevations were measured in a grid pattern rather than along single lines, as has previously been the standard procedure. The flight grid pattern was chosen to optimize the comparison with the CryoSat-2 SARIn elevation data, the location of which can deviate from nadir by several kilometers due to topography within the satellite footprint. The processing chains behind the six data sets include different outlier/error rejection approaches, and do not produce the same number of data points in our region of interest. To make a consistent analysis, we provide statistics from the validation of both the full data sets from each processing chain, and on only those data that all the six data sets provide a geo-located elevation estimate for. We find that the CryoSat-2 data sets that agree best with the validation data are those derived from dedicated land ice processing schemes. This study may serve as a benchmark for future CryoSat-2 retracker developments, and the evaluation software and data set are made publicly available.
The Cryosphere | 2013
Valentina Roberta Barletta; Louise Sandberg Sørensen; René Forsberg