Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Louise Scharf is active.

Publication


Featured researches published by Louise Scharf.


Science | 2013

Antibodies in HIV-1 Vaccine Development and Therapy

Florian Klein; Hugo Mouquet; Pia Dosenovic; Johannes F. Scheid; Louise Scharf; Michel C. Nussenzweig

Despite 30 years of study, there is no HIV-1 vaccine and, until recently, there was little hope for a protective immunization. Renewed optimism in this area of research comes in part from the results of a recent vaccine trial and the use of single-cell antibody-cloning techniques that uncovered naturally arising, broad and potent HIV-1–neutralizing antibodies (bNAbs). These antibodies can protect against infection and suppress established HIV-1 infection in animal models. The finding that these antibodies develop in a fraction of infected individuals supports the idea that new approaches to vaccination might be developed by adapting the natural immune strategies or by structure-based immunogen design. Moreover, the success of passive immunotherapy in small-animal models suggests that bNAbs may become a valuable addition to the armamentarium of drugs that work against HIV-1.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies

Hugo Mouquet; Louise Scharf; Zelda Euler; Yan Liu; Caroline Eden; Johannes F. Scheid; Ariel Halper-Stromberg; Priyanthi N. P. Gnanapragasam; Daniel I. R. Spencer; Michael S. Seaman; Hanneke Schuitemaker; Ten Feizi; Michel C. Nussenzweig; Pamela J. Bjorkman

Broadly neutralizing HIV antibodies (bNAbs) can recognize carbohydrate-dependent epitopes on gp120. In contrast to previously characterized glycan-dependent bNAbs that recognize high-mannose N-glycans, PGT121 binds complex-type N-glycans in glycan microarrays. We isolated the B-cell clone encoding PGT121, which segregates into PGT121-like and 10-1074–like groups distinguished by sequence, binding affinity, carbohydrate recognition, and neutralizing activity. Group 10-1074 exhibits remarkable potency and breadth but no detectable binding to protein-free glycans. Crystal structures of unliganded PGT121, 10-1074, and their likely germ-line precursor reveal that differential carbohydrate recognition maps to a cleft between complementarity determining region (CDR)H2 and CDRH3. This cleft was occupied by a complex-type N-glycan in a “liganded” PGT121 structure. Swapping glycan contact residues between PGT121 and 10-1074 confirmed their importance for neutralization. Although PGT121 binds complex-type N-glycans, PGT121 recognized high-mannose-only HIV envelopes in isolation and on virions. As HIV envelopes exhibit varying proportions of high-mannose- and complex-type N-glycans, these results suggest promiscuous carbohydrate interactions, an advantageous adaptation ensuring neutralization of all viruses within a given strain.


Cell | 2014

Structural Insights on the Role of Antibodies in HIV-1 Vaccine and Therapy

Anthony P. West; Louise Scharf; Johannes F. Scheid; Florian Klein; Pamela J. Bjorkman; Michel C. Nussenzweig

Despite 30 years of effort, there is no effective vaccine for HIV-1. However, antibodies can prevent HIV-1 infection in humanized mice and macaques when passively transferred. New single-cell-based methods have uncovered many broad and potent donor-derived antibodies, and structural studies have revealed the molecular bases for their activities. The new data suggest why such antibodies are difficult to elicit and inform HIV-1 vaccine development efforts. In addition to protecting against infection, the newly identified antibodies can suppress active infections in mice and macaques, suggesting they could be valuable additions to anti-HIV-1 therapies and to strategies to eradicate HIV-1 infection.


Cell | 2015

Immunization for HIV-1 Broadly Neutralizing Antibodies in Human Ig Knockin Mice.

Pia Dosenovic; Lotta von Boehmer; Amelia Escolano; Joseph G. Jardine; Natalia T. Freund; Alexander D. Gitlin; Andrew T. McGuire; Daniel W. Kulp; Thiago Y. Oliveira; Louise Scharf; John Pietzsch; Matthew D. Gray; Albert Cupo; Marit J. van Gils; Kai Hui Yao; Cassie Liu; Anna Gazumyan; Michael S. Seaman; Pamela J. Bjorkman; Rogier W. Sanders; John P. Moore; Leonidas Stamatatos; William R. Schief; Michel C. Nussenzweig

A subset of individuals infected with HIV-1 develops broadly neutralizing antibodies (bNAbs) that can prevent infection, but it has not yet been possible to elicit these antibodies by immunization. To systematically explore how immunization might be tailored to produce them, we generated mice expressing the predicted germline or mature heavy chains of a potent bNAb to the CD4 binding site (CD4bs) on the HIV-1 envelope glycoprotein (Env). Immunogens specifically designed to activate B cells bearing germline antibodies are required to initiate immune responses, but they do not elicit bNAbs. In contrast, native-like Env trimers fail to activate B cells expressing germline antibodies but elicit bNAbs by selecting for a restricted group of light chains bearing specific somatic mutations that enhance neutralizing activity. The data suggest that vaccination to elicit anti-HIV-1 antibodies will require immunization with a succession of related immunogens.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Computational analysis of anti–HIV-1 antibody neutralization panel data to identify potential functional epitope residues

Anthony P. West; Louise Scharf; Joshua A. Horwitz; Florian Klein; Michel C. Nussenzweig; Pamela J. Bjorkman

Advances in single-cell antibody cloning methods have led to the identification of a variety of broadly neutralizing anti–HIV-1 antibodies. We developed a computational tool (Antibody Database) to help identify critical residues on the HIV-1 envelope protein whose natural variation affects antibody activity. Our simplifying assumption was that, for a given antibody, a significant portion of the dispersion of neutralization activity across a panel of HIV-1 strains is due to the amino acid identity or glycosylation state at a small number of specific sites, each acting independently. A model of an antibody’s neutralization IC50 was developed in which each site contributes a term to the logarithm of the modeled IC50. The analysis program attempts to determine the set of rules that minimizes the sum of the residuals between observed and modeled IC50 values. The predictive quality of the identified rules may be assessed in part by whether there is support for rules within individual viral clades. As a test case, we analyzed antibody 8ANC195, an anti-glycoprotein gp120 antibody of unknown specificity. The model for this antibody indicated that several glycosylation sites were critical for neutralization. We evaluated this prediction by measuring neutralization potencies of 8ANC195 against HIV-1 in vitro and in an antibody therapy experiment in humanized mice. These experiments confirmed that 8ANC195 represents a distinct class of glycan-dependent anti–HIV-1 antibody and validated the utility of computational analysis of neutralization panel data.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Structural basis for HIV-1 gp120 recognition by a germ-line version of a broadly neutralizing antibody

Louise Scharf; Anthony P. West; Han Gao; Terri Lee; Johannes F. Scheid; Michel C. Nussenzweig; Pamela J. Bjorkman; Ron Diskin

Efforts to design an effective antibody-based vaccine against HIV-1 would benefit from understanding how germ-line B-cell receptors (BCRs) recognize the HIV-1 gp120/gp41 envelope spike. Potent VRC01-like (PVL) HIV-1 antibodies derived from the VH1-2*02 germ-line allele target the conserved CD4 binding site on gp120. A bottleneck for design of immunogens capable of eliciting PVL antibodies is that VH1-2*02 germ-line BCR interactions with gp120 are uncharacterized. Here, we report the structure of a VH1-2*02 germ-line antibody alone and a germ-line heavy-chain/mature light-chain chimeric antibody complexed with HIV-1 gp120. VH1-2*02 residues make extensive contacts with the gp120 outer domain, including all PVL signature and CD4 mimicry interactions, but not critical CDRH3 contacts with the gp120 inner domain and bridging sheet that are responsible for the improved potency of NIH45-46 over closely related clonal variants, such as VRC01. Our results provide insight into initial recognition of HIV-1 by VH1-2*02 germ-line BCRs and may facilitate the design of immunogens tailored to engage and stimulate broad and potent CD4 binding site antibodies.


Science Translational Medicine | 2017

Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller.

Natalia T. Freund; Haoqing Wang; Louise Scharf; Lilian Nogueira; Joshua A. Horwitz; Yotam Bar-On; Jovana Golijanin; Stuart A. Sievers; Devin Sok; Hui Cai; Julio C. Cesar Lorenzi; Ariel Halper-Stromberg; Ildiko Toth; Alicja Piechocka-Trocha; Harry B. Gristick; Marit J. van Gils; Rogier W. Sanders; Lai-Xi Wang; Michael S. Seaman; Dennis R. Burton; Anna Gazumyan; Bruce D. Walker; Anthony P. West; Pamela J. Bjorkman; Michel C. Nussenzweig

Three new potent neutralizing antibodies neutralize autologous HIV-1 strains and contribute to viral control in an HIV-1 controller. Antibodies can hold HIV-1 at an impasse Neutralizing antibodies put selective pressure on pathogens to mutate and escape from immune detection, which is one of the reasons why HIV-1 infection is difficult to contain. In this issue, Freund et al. studied samples spanning almost a decade from an individual who naturally controls HIV-1 infection without progressing to AIDS. They discovered three potent antibodies coexisting with viral strains that were sensitive to antibody neutralization, indicating that these antibodies may be contributing to viral control. These antibodies were also able to prevent HIV-1 viremia in humanized mice, demonstrating that the antibodies may be beneficial as passive immunotherapy for infected individuals. Some HIV-1–infected patients develop broad and potent HIV-1 neutralizing antibodies (bNAbs) that when passively transferred to mice or macaques can treat or prevent infection. However, bNAbs typically fail to neutralize coexisting autologous viruses due to antibody-mediated selection against sensitive viral strains. We describe an HIV-1 controller expressing HLA-B57*01 and HLA-B27*05 who maintained low viral loads for 30 years after infection and developed broad and potent serologic activity against HIV-1. Neutralization was attributed to three different bNAbs targeting nonoverlapping sites on the HIV-1 envelope trimer (Env). One of the three, BG18, an antibody directed against the glycan-V3 portion of Env, is the most potent member of this class reported to date and, as revealed by crystallography and electron microscopy, recognizes HIV-1 Env in a manner that is distinct from other bNAbs in this class. Single-genome sequencing of HIV-1 from serum samples obtained over a period of 9 years showed a diverse group of circulating viruses, 88.5% (31 of 35) of which remained sensitive to at least one of the temporally coincident autologous bNAbs and the individual’s serum. Thus, bNAb-sensitive strains of HIV-1 coexist with potent neutralizing antibodies that target the virus and may contribute to control in this individual. When administered as a mix, the three bNAbs controlled viremia in HIV-1YU2–infected humanized mice. Our finding suggests that combinations of bNAbs may contribute to control of HIV-1 infection.


eLife | 2016

Structural basis for germline antibody recognition of HIV-1 immunogens.

Louise Scharf; Anthony P. West; Stuart A. Sievers; Courtney Chen; Siduo Jiang; Han Gao; Matthew D. Gray; Andrew T. McGuire; Johannes F. Scheid; Michel C. Nussenzweig; Leonidas Stamatatos; Pamela J. Bjorkman

Efforts to elicit broadly neutralizing antibodies (bNAbs) against HIV-1 require understanding germline bNAb recognition of HIV-1 envelope glycoprotein (Env). The VRC01-class bNAb family derived from the VH1-2*02 germline allele arose in multiple HIV-1–infected donors, yet targets the CD4-binding site on Env with common interactions. Modified forms of the 426c Env that activate germline-reverted B cell receptors are candidate immunogens for eliciting VRC01-class bNAbs. We present structures of germline-reverted VRC01-class bNAbs alone and complexed with 426c-based gp120 immunogens. Germline bNAb–426c gp120 complexes showed preservation of VRC01-class signature residues and gp120 contacts, but detectably different binding modes compared to mature bNAb-gp120 complexes. Unlike typical antibody-antigen interactions, VRC01–class germline antibodies exhibited preformed antigen-binding conformations for recognizing immunogens. Affinity maturation introduced substitutions increasing induced-fit recognition and electropositivity, potentially to accommodate negatively-charged complex-type N-glycans on gp120. These results provide general principles relevant to the unusual evolution of VRC01–class bNAbs and guidelines for structure-based immunogen design. DOI: http://dx.doi.org/10.7554/eLife.13783.001


Journal of Virology | 2016

A Highly Conserved Residue of the HIV-1 gp120 Inner Domain Is Important for Antibody-Dependent Cellular Cytotoxicity Responses Mediated by Anti-cluster A Antibodies

Shilei Ding; Maxime Veillette; Mathieu Coutu; Jérémie Prévost; Louise Scharf; Pamela J. Bjorkman; Guido Ferrari; James E. Robinson; Christina M. Stürzel; Beatrice H. Hahn; Daniel Sauter; Frank Kirchhoff; George K. Lewis; Marzena Pazgier; Andrés Finzi

ABSTRACT Previous studies have shown that sera from HIV-1-infected individuals contain antibodies able to mediate antibody-dependent cellular cytotoxicity (ADCC). These antibodies preferentially recognize envelope glycoprotein (Env) epitopes induced upon CD4 binding. Here, we show that a highly conserved tryptophan at position 69 of the gp120 inner domain is important for ADCC mediated by anti-cluster A antibodies and sera from HIV-1-infected individuals.


PLOS Pathogens | 2015

A New Glycan-Dependent CD4-Binding Site Neutralizing Antibody Exerts Pressure on HIV-1 In Vivo

Natalia T. Freund; Joshua A. Horwitz; Lilian Nogueira; Stuart A. Sievers; Louise Scharf; Johannes F. Scheid; Anna Gazumyan; Cassie Liu; Klara Velinzon; Ariel Goldenthal; Rogier W. Sanders; John P. Moore; Pamela J. Bjorkman; Michael S. Seaman; Bruce D. Walker; Florian Klein; Michel C. Nussenzweig

The CD4 binding site (CD4bs) on the envelope glycoprotein is a major site of vulnerability that is conserved among different HIV-1 isolates. Many broadly neutralizing antibodies (bNAbs) to the CD4bs belong to the VRC01 class, sharing highly restricted origins, recognition mechanisms and viral escape pathways. We sought to isolate new anti-CD4bs bNAbs with different origins and mechanisms of action. Using a gp120 2CC core as bait, we isolated antibodies encoded by IGVH3-21 and IGVL3-1 genes with long CDRH3s that depend on the presence of the N-linked glycan at position-276 for activity. This binding mode is similar to the previously identified antibody HJ16, however the new antibodies identified herein are more potent and broad. The most potent variant, 179NC75, had a geometric mean IC80 value of 0.42 μg/ml against 120 Tier-2 HIV-1 pseudoviruses in the TZM.bl assay. Although this group of CD4bs glycan-dependent antibodies can be broadly and potently neutralizing in vitro, their in vivo activity has not been tested to date. Here, we report that 179NC75 is highly active when administered to HIV-1-infected humanized mice, where it selects for escape variants that lack a glycan site at position-276. The same glycan was absent from the virus isolated from the 179NC75 donor, implying that the antibody also exerts selection pressure in humans.

Collaboration


Dive into the Louise Scharf's collaboration.

Top Co-Authors

Avatar

Pamela J. Bjorkman

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony P. West

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael S. Seaman

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Han Gao

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge