Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lourdes Mounien is active.

Publication


Featured researches published by Lourdes Mounien.


Neuropsychopharmacology | 2009

Pituitary adenylate cyclase-activating polypeptide inhibits food intake in mice through activation of the hypothalamic melanocortin system.

Lourdes Mounien; Jean-Claude do Rego; Patrice Bizet; Isabelle Boutelet; Guillaume Gourcerol; Alain Fournier; Philippe Brabet; Jean Costentin; Hubert Vaudry; Sylvie Jégou

Pituitary adenylate cyclase-activating polypeptide (PACAP) and the proopiomelanocortin (POMC)-derived peptide, α-melanocyte-stimulating hormone (α-MSH), exert anorexigenic activities. While α-MSH is known to inhibit food intake and stimulate catabolism via activation of the central melanocortin-receptor MC4-R, little is known regarding the mechanism by which PACAP inhibits food consumption. We have recently found that, in the arcuate nucleus of the hypothalamus, a high proportion of POMC neurons express PACAP receptors. This observation led us to investigate whether PACAP may inhibit food intake through a POMC-dependent mechanism. In mice deprived of food for 18 h, intracerebroventricular administration of PACAP significantly reduced food intake after 30 min, and this effect was reversed by the PACAP antagonist PACAP6-38. In contrast, vasoactive intestinal polypeptide did not affect feeding behavior. Pretreatment with the MC3-R/MC4-R antagonist SHU9119 significantly reduced the effect of PACAP on food consumption. Central administration of PACAP induced c-Fos mRNA expression and increased the proportion of POMC neuron-expressing c-Fos mRNA in the arcuate nucleus. Furthermore, PACAP provoked an increase in POMC and MC4-R mRNA expression in the hypothalamus, while MC3-R mRNA level was not affected. POMC mRNA level in the arcuate nucleus of PACAP-specific receptor (PAC1-R) knock-out mice was reduced as compared with wild-type animals. Finally, i.c.v. injection of PACAP provoked a significant increase in plasma glucose level. Altogether, these results indicate that PACAP, acting through PAC1-R, may inhibit food intake via a melanocortin-dependent pathway. These data also suggest a central action of PACAP in the control of glucose metabolism.


Toxins | 2012

Advances in Deoxynivalenol Toxicity Mechanisms: The Brain as a Target

Marion S. Bonnet; Julien Roux; Lourdes Mounien; Michel Dallaporta; Jean-Denis Troadec

Deoxynivalenol (DON), mainly produced by Fusarium fungi, and also commonly called vomitoxin, is a trichothecene mycotoxin. It is one of the most abundant trichothecenes which contaminate cereals consumed by farm animals and humans. The extent of cereal contamination is strongly associated with rainfall and moisture at the time of flowering and with grain storage conditions. DON consumption may result in intoxication, the severity of which is dose-dependent and may lead to different symptoms including anorexia, vomiting, reduced weight gain, neuroendocrine changes, immunological effects, diarrhea, leukocytosis, hemorrhage or circulatory shock. During the last two decades, many studies have described DON toxicity using diverse animal species as a model. While the action of the toxin on peripheral organs and tissues is well documented, data illustrating its effect on the brain are significantly less abundant. Yet, DON is known to affect the central nervous system. Recent studies have provided new evidence and detail regarding the action of the toxin on the brain. The purpose of the present review is to summarize critical studies illustrating this central action of the toxin and to suggest research perspectives in this field.


Neuroendocrinology | 2005

Expression of Melanocortin MC3 and MC4 Receptor mRNAs by Neuropeptide Y Neurons in the Rat Arcuate Nucleus

Lourdes Mounien; Patrice Bizet; Isabelle Boutelet; Hubert Vaudry; Sylvie Jégou

Neuropeptide Y (NPY) and α-melanocyte-stimulating hormone (α-MSH), two neuropeptides that are synthesized in neurons of the arcuate nucleus of the hypothalamus, exert opposite actions on food intake and body weight. NPY is orexigenic and decreases energy expenditure whereas α-MSH reduces food consumption and stimulates catabolism. α-MSH is an endogenous ligand for the central melanocortin receptors, MC3-R and MC4-R. In order to determine whether α-MSH may act directly on NPY neurons in the arcuate nucleus, we have investigated the possible occurrence of MC3-R and MC4-R mRNA in NPY-expressing cell bodies in the rat hypothalamus. Double-labeling in situ hybridization histochemistry using 35S-labeled (MC3-R or MC4-R) and digoxigenin-labeled (NPY) riboprobes revealed that 38 ± 1% of the NPY mRNA-positive perikarya expressed MC3-R mRNA while only 9 ± 2% of the NPY-producing neurons contained MC4-R mRNA. The proportions of NPY neurons that express MC3-R mRNA or MC4-R mRNA were not significatively different in the anterior and posterior aspects of the arcuate nucleus. The present study shows that a large proportion of NPY neurons in the rat hypothalamus express MC3-R mRNA while a much lower number of NPY neurons express MC4-R mRNA, suggesting that melanocortins may directly modulate the activity of the hypothalamic NPY system, mainly through activation of MC3-R. These data provide additional evidence for the complex interactions between the stimulatory (NPY) and inhibitory (α-MSH) pathways controlling feeding behavior and energy homeostasis.


Neuroscience | 2007

Gastric electrical stimulation modulates hypothalamic corticotropin-releasing factor–producing neurons during post-operative ileus in rat

Guillaume Gourcerol; S. Gallas; Lourdes Mounien; I. Leblanc; Patrice Bizet; Isabelle Boutelet; A.M. Leroi; Philippe Ducrotté; H. Vaudry; Sylvie Jégou

High-frequency/low-energy gastric electrical stimulation (GES) is an efficient therapy to treat gastric emptying-related disorders but its mechanism of action remains poorly understood. We aimed to assess the effects of high-frequency/low-energy GES on corticotropin-releasing factor (CRF)-producing neurons in the paraventricular nucleus of the hypothalamus (PVN), which are involved in gastric ileus induced by laparotomy. Two electrodes were implanted in the rat gastric antrum during laparotomy, then stimulation (amplitude: 2 mA; pulse duration 330 micros; frequency: 2 Hz; 1 min ON/2 min OFF) or sham stimulation (control group) were applied. Using immunohistochemistry, the number of c-Fos protein-expressing neurons (c-Fos protein-immunoreactive cells, Fos-IR) was quantified in the PVN after 1 h of stimulation. The number of neurons expressing simultaneously c-Fos protein and CRF mRNA was measured by means of immunocytochemistry combined with in situ hybridization. Finally, c-Fos and CRF mRNA levels in the hypothalamus were determined by in situ hybridization or quantitative reverse transcriptase-polymerase chain reaction. Fos-IR in the PVN was significantly decreased 1 h after GES (P<0.05) but was not affected by sub-diaphragmatic vagotomy. The number of neurons containing c-Fos protein and CRF mRNA was lower in the GES group compared with the control group (P<0.05). In addition, c-Fos and CRF mRNA levels in the PVN were significantly decreased by GES (P<or=0.05). It is concluded that acute GES reduces the number of CRF-producing neurons and decreases CRF expression in the PVN during post-operative gastric ileus.


Neuroscience | 2006

Pituitary adenylate cyclase-activating polypeptide directly modulates the activity of proopiomelanocortin neurons in the rat arcuate nucleus.

Lourdes Mounien; Patrice Bizet; Isabelle Boutelet; Guillaume Gourcerol; Alain Fournier; Hubert Vaudry; Sylvie Jégou

Pituitary adenylate cyclase-activating polypeptide (PACAP) and the proopiomelanocortin (POMC)-derived peptide alpha-melanocyte-stimulating hormone (alpha-MSH) both regulate multiple neuroendocrine functions and feeding behavior. Two subtypes of PACAP receptor mRNAs, pituitary adenylate cyclase-activating polypeptide-specific receptor (PAC1-R) and pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal polypeptide mutual receptor (VPAC2-R), are actively expressed in the arcuate nucleus of the hypothalamus, where POMC cell bodies are located. This observation led us to investigate the possible regulatory action of PACAP on rat POMC neurons. Double-labeling in situ hybridization histochemistry revealed that approximately 50% of POMC-producing neurons express PAC1-R and/or VPAC2-R mRNAs. The proportion of POMC neurons that also contain PAC1-R mRNA was homogeneous along the rostro-caudal axis of the arcuate nucleus while POMC-positive cell bodies expressing the VPAC2-R subtype were more abundant in the rostral region. Incubation of mediobasal hypothalamic explants with PACAP (10(-7) M; 30 min) increased POMC mRNA expression, and this effect was blocked by PACAP6-38 (10(-6) M). In contrast, incubation with vasoactive intestinal polypeptide (10(-7) M) did not affect POMC mRNA level. Incubation of hypothalamic fragments with PACAP (10(-7) M) caused a significant increase in alpha-MSH content in the tissue and in the incubation medium. Altogether, the present results reveal that exogenous PACAP, acting probably through PAC1-R, regulates the activity of POMC neurons in the rat hypothalamus. These data suggest that the effects of PACAP on the gonadotropin-releasing hormone neuroendocrine axis and the regulation of feeding behavior may be mediated, at least in part, through modulation of POMC neurons.


Regulatory Peptides | 2013

Gastric distension activates NUCB2/nesfatin-1-expressing neurons in the nucleus of the solitary tract

Marion S. Bonnet; Wassila Ouelaa; Vanessa Tillement; Jérôme Trouslard; André Jean; Bruno J. Gonzalez; Guillaume Gourcerol; Michel Dallaporta; Jean-Denis Troadec; Lourdes Mounien

Brainstem structures such as the nucleus of the solitary tract (NTS) and the dorsal motor nucleus of the vagus nerve (DMNX) are essential for the digestive function of the stomach. A large number of neurotransmitters including glutamate and gamma-aminobutyric acid (GABA) are involved in the central control of gastric functions. However, the neuropeptidergic systems implicated in this process remain undetermined. Nesfatin-1 was recently identified as a neuropeptide cleaved from the N-terminal part of NEFA/nucleobindin 2 precursor (NUCB2). Central administration of this neuropeptide inhibits food consumption and gastroduodenal motility in rodents. Interestingly, the NTS and the DMNX contain a dense population of NUCB2/nesfatin-1 cell bodies. These observations led us to investigate the possible involvement of NUCB2/nesfatin-1 neurons in the brainstem neuronal pathways that modulate gastric functions. We observed an activation of NTS NUCB2/nesfatinergic neurons after gastric distention in rats. In addition, we found that several NTS NUCB2/nesfatinergic neurons were GABAergic. Finally, when fluorogold was injected at the stomach level, many retrogradely labeled neurons were observed in the DMNX which were also positive for NUCB2/nesfatin-1. Taken together, these observations suggest for the first time that NUCB2/nesfatin-1 neurons of the NTS are sensitive to gastric distension and then may contribute to the satiety signal.


Frontiers in Cellular Neuroscience | 2015

Leptin is required for hypothalamic regulation of miRNAs targeting POMC 3′UTR

Adel Derghal; Mehdi Djelloul; Coraline Airault; Clément Pierre; Michel Dallaporta; Jean-Denis Troadec; Vanessa Tillement; Catherine Tardivel; Bruno Bariohay; Jérôme Trouslard; Lourdes Mounien

The central nervous system (CNS) monitors modifications in metabolic parameters or hormone levels and elicits adaptive responses such as food intake regulation. Particularly, within the hypothalamus, leptin modulates the activity of pro-opiomelanocortin (POMC) neurons which are critical regulators of energy balance. Consistent with a pivotal role of the melanocortin system in the control of energy homeostasis, disruption of the POMC gene causes hyperphagia and obesity. MicroRNAs (miRNAs) are short noncoding RNA molecules that post-transcriptionally repress the expression of genes by binding to 3′-untranslated regions (3′UTR) of the target mRNAs. However, little is known regarding the role of miRNAs that target POMC 3′UTR in the central control energy homeostasis. Particularly, their interaction with the leptin signaling pathway remain unclear. First, we used common prediction programs to search for potential miRNAs target sites on 3′UTR of POMC mRNA. This screening identified a set of conserved miRNAs seed sequences for mir-383, mir-384-3p, and mir-488. We observed that mir-383, mir-384-3p, and mir-488 are up-regulated in the hypothalamus of leptin deficient ob/ob mice. In accordance with these observations, we also showed that mir-383, mir-384-3p, and mir-488 were increased in db/db mice that exhibit a non-functional leptin receptor. The intraperitoneal injection of leptin down-regulated the expression of these miRNAs of interest in the hypothalamus of ob/ob mice showing the involvement of leptin in the expression of mir-383, mir-384-3p, and mir-488. Finally, the evaluation of responsivity to intracerebroventricular administration of leptin exhibited that a chronic treatment with leptin decreased mir-488 expression in hypothalamus of C57BL/6 mice. In summary, these results suggest that leptin modulates the expression of miRNAs that target POMC mRNA in hypothalamus.


Annals of the New York Academy of Sciences | 2006

Expression of PACAP receptor mRNAs by neuropeptide Y neurons in the rat arcuate nucleus.

Lourdes Mounien; Patrice Bizet; Isabelle Boutelet; Guillaume Gourcerol; Magali Basille; Bruno J. Gonzalez; Hubert Vaudry; Sylvie Jégou

Abstract:  Neuropeptide Y (NPY) and pituitary adenylate cyclase‐activating polypeptide (PACAP) exert opposite actions in energy homeostasis: NPY is a potent orexigenic peptide whereas PACAP reduces food intake. PAC1‐R and VPAC2‐R mRNAs are actively expressed in the arcuate nucleus of the hypothalamus which contains a prominent population of NPY neurons. By using a double‐labeling in situ hybridization technique, we now show that a significant proportion of NPY neurons express PAC1‐R or VPAC2‐R mRNA. This observation indicates that PACAP may regulate the activity of NPY neurons, suggesting that the inhibitory effect of PACAP on food intake may be mediated, at least in part, through modulation of NPY neurotransmission.


Annals of the New York Academy of Sciences | 2006

Mechanisms of VIP-Induced Neuroprotection against Neonatal Excitotoxicity

Claire-Marie Rangon; Eleni Dicou; Stéphanie Goursaud; Lourdes Mounien; Sylvie Jégou; Thierry Janet; Jean-Marc Muller; Vincent Lelievre; Pierre Gressens

Abstract:  Two VIP receptors, shared with a similar affinity by pituitary adenylate cyclase‐activating polypeptide (PACAP), have been cloned: VPAC1 and VPAC2. PHI binds to these receptors with a lower affinity. We previously showed that VIP protects against excitotoxic white matter damage in newborn mice. This article aimed to determine the receptor involved in VIP‐induced neuroprotection. VIP effects were mimicked with a similar potency by VPAC2 agonists and PHI but not by VPAC1 agonists, PACAP 27 or PACAP 38. VIP neuroprotective effects were lost in mice lacking VPAC2 receptor. In situ hybridization confirmed the presence of VPAC2 mRNA. These data suggest that, in this model, VIP‐induced neuroprotection is mediated by VPAC2 receptors. The pharmacology of this VPAC2 receptor seems unconventional as PACAP does not mimic VIP effects and PHI acts with a comparable potency.


Frontiers in Neuroscience | 2016

An Emerging Role of micro-RNA in the Effect of the Endocrine Disruptors

Adel Derghal; Jérôme Trouslard; Lourdes Mounien

Endocrine-disrupting chemicals (EDCs) are diverse natural and synthetic chemicals that may alter various mechanisms of the endocrine system and produce adverse developmental, reproductive, metabolic, and neurological effects in both humans and wildlife. Research on EDCs has revealed that they use a variety of both nuclear receptor-mediated and non-receptor-mediated mechanisms to modulate different components of the endocrine system. The molecular mechanisms underlying the effects of EDCs are still under investigation. Interestingly, some of the effects of EDCs have been observed to pass on to subsequent unexposed generations, which can be explained by the gametic transmission of deregulated epigenetic marks. Epigenetics is the study of heritable changes in gene expression that occur without a change in the DNA sequence. Epigenetic mechanisms, including histone modifications, DNA methylation, and specific micro-RNAs (miRNAs) expression, have been proposed to mediate transgenerational transmission and can be triggered by environmental factors. MiRNAs are short non-coding RNA molecules that post-transcriptionally repress the expression of genes by binding to 3′-untranslated regions of the target mRNAs. Given that there is mounting evidence that miRNAs are regulated by hormones, then clearly it is important to investigate the potential for environmental EDCs to deregulate miRNA expression and action.

Collaboration


Dive into the Lourdes Mounien's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adel Derghal

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge